26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose.

      Applied and Environmental Microbiology
      Colletotrichum, classification, genetics, growth & development, pathogenicity, DNA, Fungal, analysis, DNA, Ribosomal Spacer, Fragaria, microbiology, Genetic Variation, Lupinus, Molecular Sequence Data, Olea, Phenotype, Plant Diseases, Polymerase Chain Reaction, Sequence Analysis, DNA

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthracnose (Colletotrichum spp.) is an important disease causing major yield losses and poor oil quality in olives. The objectives were to determine the diversity and distribution pattern of Colletotrichum spp. populations prevalent in olives and their relatedness to anthracnose pathogens in other hosts, assess their pathogenic variability and host preference, and develop diagnostic tools. A total of 128 Colletotrichum spp. isolates representing all olive-growing areas in Portugal and a few isolates from other countries were characterized by molecular and phenotypic assays and compared with reference isolates. Arbitrarily primed PCR data, internal transcribed spacer of rRNA gene and beta-tubulin 2 nucleotide sequences, colony characteristics, and benomyl sensitivity showed Colletotrichum acutatum to be dominant (>97%) with limited occurrence of Colletotrichum gloeosporioides (<3%). Among C. acutatum populations, five molecular groups, A2 to A6, were identified. A2 was widely prevalent (89%), coinciding with a high incidence of anthracnose and environmental conditions suitable to disease spread. A4 was dominant in a particular region, while other C. acutatum groups and C. gloeosporioides were sporadic in their occurrence, mostly related to marginal areas of olive cultivation. C. gloeosporioides, isolated from olive fruits with symptoms indistinguishable from those of C. acutatum, showed same virulence rating as the most virulent C. acutatum isolate from group A2. C. acutatum and C. gloeosporioides isolates tested in infected strawberry fruits and strawberry and lupin plants revealed their cross-infection potential. Diagnostic tools were developed from beta-tubulin 2 sequences to enable rapid and reliable pathogen detection and differentiation of C. acutatum groups.

          Related collections

          Author and article information

          Comments

          Comment on this article