73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ballistic performances are determined by both the maximal lower limb power output ( P max ) and their individual force-velocity (F-v) mechanical profile, especially the F-v imbalance ( FV imb ): difference between the athlete's actual and optimal profile. An optimized training should aim to increase P max and/or reduce FV imb . The aim of this study was to test whether an individualized training program based on the individual F-v profile would decrease subjects' individual FV imb and in turn improve vertical jump performance. FVimb was used as the reference to assign participants to different training intervention groups. Eighty four subjects were assigned to three groups: an “optimized” group divided into velocity-deficit, force-deficit, and well-balanced sub-groups based on subjects' FV imb , a “non-optimized” group for which the training program was not specifically based on FV imb and a control group. All subjects underwent a 9-week specific resistance training program. The programs were designed to reduce FV imb for the optimized groups (with specific programs for sub-groups based on individual FV imb values), while the non-optimized group followed a classical program exactly similar for all subjects. All subjects in the three optimized training sub-groups (velocity-deficit, force-deficit, and well-balanced) increased their jumping performance (12.7 ± 5.7% ES = 0.93 ± 0.09, 14.2 ± 7.3% ES = 1.00 ± 0.17, and 7.2 ± 4.5% ES = 0.70 ± 0.36, respectively) with jump height improvement for all subjects, whereas the results were much more variable and unclear in the non-optimized group. This greater change in jump height was associated with a markedly reduced FV imb for both force-deficit (57.9 ± 34.7% decrease in FV imb ) and velocity-deficit (20.1 ± 4.3%) subjects, and unclear or small changes in P max (−0.40 ± 8.4% and +10.5 ± 5.2%, respectively). An individualized training program specifically based on FV imb (gap between the actual and optimal F-v profiles of each individual) was more efficient at improving jumping performance (i.e., unloaded squat jump height) than a traditional resistance training common to all subjects regardless of their FV imb . Although improving both FV imb and P max has to be considered to improve ballistic performance, the present results showed that reducing FV imb without even increasing P max lead to clearly beneficial jump performance changes. Thus, FV imb could be considered as a potentially useful variable for prescribing optimal resistance training to improve ballistic performance.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Progressive statistics for studies in sports medicine and exercise science.

          Statistical guidelines and expert statements are now available to assist in the analysis and reporting of studies in some biomedical disciplines. We present here a more progressive resource for sample-based studies, meta-analyses, and case studies in sports medicine and exercise science. We offer forthright advice on the following controversial or novel issues: using precision of estimation for inferences about population effects in preference to null-hypothesis testing, which is inadequate for assessing clinical or practical importance; justifying sample size via acceptable precision or confidence for clinical decisions rather than via adequate power for statistical significance; showing SD rather than SEM, to better communicate the magnitude of differences in means and nonuniformity of error; avoiding purely nonparametric analyses, which cannot provide inferences about magnitude and are unnecessary; using regression statistics in validity studies, in preference to the impractical and biased limits of agreement; making greater use of qualitative methods to enrich sample-based quantitative projects; and seeking ethics approval for public access to the depersonalized raw data of a study, to address the need for more scrutiny of research and better meta-analyses. Advice on less contentious issues includes the following: using covariates in linear models to adjust for confounders, to account for individual differences, and to identify potential mechanisms of an effect; using log transformation to deal with nonuniformity of effects and error; identifying and deleting outliers; presenting descriptive, effect, and inferential statistics in appropriate formats; and contending with bias arising from problems with sampling, assignment, blinding, measurement error, and researchers' prejudices. This article should advance the field by stimulating debate, promoting innovative approaches, and serving as a useful checklist for authors, reviewers, and editors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production.

            This series of reviews focuses on the most important neuromuscular function in many sport performances: the ability to generate maximal muscular power. Part 1, published in an earlier issue of Sports Medicine, focused on the factors that affect maximal power production while part 2 explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability to generate maximal power during complex motor skills is of paramount importance to successful athletic performance across many sports. A crucial issue faced by scientists and coaches is the development of effective and efficient training programmes that improve maximal power production in dynamic, multi-joint movements. Such training is referred to as 'power training' for the purposes of this review. Although further research is required in order to gain a deeper understanding of the optimal training techniques for maximizing power in complex, sports-specific movements and the precise mechanisms underlying adaptation, several key conclusions can be drawn from this review. First, a fundamental relationship exists between strength and power, which dictates that an individual cannot possess a high level of power without first being relatively strong. Thus, enhancing and maintaining maximal strength is essential when considering the long-term development of power. Second, consideration of movement pattern, load and velocity specificity is essential when designing power training programmes. Ballistic, plyometric and weightlifting exercises can be used effectively as primary exercises within a power training programme that enhances maximal power. The loads applied to these exercises will depend on the specific requirements of each particular sport and the type of movement being trained. The use of ballistic exercises with loads ranging from 0% to 50% of one-repetition maximum (1RM) and/or weightlifting exercises performed with loads ranging from 50% to 90% of 1RM appears to be the most potent loading stimulus for improving maximal power in complex movements. Furthermore, plyometric exercises should involve stretch rates as well as stretch loads that are similar to those encountered in each specific sport and involve little to no external resistance. These loading conditions allow for superior transfer to performance because they require similar movement velocities to those typically encountered in sport. Third, it is vital to consider the individual athlete's window of adaptation (i.e. the magnitude of potential for improvement) for each neuromuscular factor contributing to maximal power production when developing an effective and efficient power training programme. A training programme that focuses on the least developed factor contributing to maximal power will prompt the greatest neuromuscular adaptations and therefore result in superior performance improvements for that individual. Finally, a key consideration for the long-term development of an athlete's maximal power production capacity is the need for an integration of numerous power training techniques. This integration allows for variation within power meso-/micro-cycles while still maintaining specificity, which is theorized to lead to the greatest long-term improvement in maximal power.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making meaningful inferences about magnitudes.

              A study of a sample provides only an estimate of the true (population) value of an outcome statistic. A report of the study therefore usually includes an inference about the true value. Traditionally, a researcher makes an inference by declaring the value of the statistic statistically significant or nonsignificant on the basis of a P value derived from a null-hypothesis test. This approach is confusing and can be misleading, depending on the magnitude of the statistic, error of measurement, and sample size. The authors use a more intuitive and practical approach based directly on uncertainty in the true value of the statistic. First they express the uncertainty as confidence limits, which define the likely range of the true value. They then deal with the real-world relevance of this uncertainty by taking into account values of the statistic that are substantial in some positive and negative sense, such as beneficial or harmful. If the likely range overlaps substantially positive and negative values, they infer that the outcome is unclear; otherwise, they infer that the true value has the magnitude of the observed value: substantially positive, trivial, or substantially negative. They refine this crude inference by stating qualitatively the likelihood that the true value will have the observed magnitude (eg, very likely beneficial). Quantitative or qualitative probabilities that the true value has the other 2 magnitudes or more finely graded magnitudes (such as trivial, small, moderate, and large) can also be estimated to guide a decision about the utility of the outcome.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                09 January 2017
                2016
                : 7
                : 677
                Affiliations
                [1] 1Faculty of Sport, Catholic University of San Antonio Murcia, Spain
                [2] 2Laboratoire Interuniversitaire de Biologie de la motricité (EA7424), University of Savoie Mont Blanc Le Bourget du Lac, France
                [3] 3Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology Auckland, New Zealand
                [4] 4Université Côte d'Azur, LAMHESS Nice, France
                Author notes

                Edited by: Gregoire P. Millet, University of Lausanne, Switzerland

                Reviewed by: Chris R. Abbiss, Edith Cowan University, Australia; Davide Viggiano, University of Molise, Italy

                *Correspondence: Jean-Benoît Morin jean-benoit.morin@ 123456unice.fr

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2016.00677
                5220048
                28119624
                24c1d934-a04c-4bf5-be37-d74cc79333e6
                Copyright © 2017 Jiménez-Reyes, Samozino, Brughelli and Morin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 September 2016
                : 20 December 2016
                Page count
                Figures: 3, Tables: 3, Equations: 1, References: 68, Pages: 13, Words: 11284
                Funding
                Funded by: Ministerio de Educación, Cultura y Deporte 10.13039/501100003176
                Award ID: CAS15/00171
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                jumping,ballistic training,explosive performance,resistance strength training,maximal power output

                Comments

                Comment on this article