20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exaptation of Bornavirus-Like Nucleoprotein Elements in Afrotherians

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endogenous bornavirus-like nucleoprotein elements (EBLNs), the nucleotide sequence elements derived from the nucleoprotein gene of ancient bornavirus-like viruses, have been identified in many animal genomes. Here we show evidence that EBLNs encode functional proteins in their host. Some afrotherian EBLNs were observed to have been maintained for more than 83.3 million years under negative selection. Splice variants were expressed from the genomic loci of EBLNs in elephant, and some were translated into proteins. The EBLN proteins appeared to be localized to the rough endoplasmic reticulum in African elephant cells, in contrast to the nuclear localization of bornavirus N. These observations suggest that afrotherian EBLNs have acquired a novel function in their host. Interestingly, genomic sequences of the first exon and its flanking regions in these EBLN loci were homologous to those of transmembrane protein 106B (TMEM106B). The upstream region of the first exon in the EBLN loci exhibited a promoter activity, suggesting that the ability of these EBLNs to be transcribed in the host cell was gained through capturing a partial duplicate of TMEM106B. In conclusion, our results strongly support for exaptation of EBLNs to encode host proteins in afrotherians.

          Author Summary

          Endogenous retroviruses are representative of endogenous viral elements (EVEs), which are known to have occasionally served as the source of evolutionary innovations of the host. Endogenous bornavirus-like nucleoprotein element (EBLN) was the first EVE identified in mammalian genomes to have been derived from a non-retroviral RNA virus. Here we show evidence that EBLNs that were integrated into afrotherian genomes more than 83.3 million years ago have gained novel protein functions associated with rough endoplasmic reticulum in afrotherians. In the amino acid sequence of EBLN proteins, negative selection appeared to have operated more strongly on hydrophilic regions than on hydrophobic regions, suggesting that EBLN proteins may interact with other molecules in their host cells. In addition, we clarified the mechanism how EBLNs have acquired an ability to be transcribed in the host cell; they captured a partial duplicate of an intrinsic gene, transmembrane protein 106B, which retained an intrinsic promoter activity. Our findings suggest that not only retroviral EVEs but also non-retroviral EVEs may have contributed to the host evolution.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          TimeTree: a public knowledge-base of divergence times among organisms.

          Biologists and other scientists routinely need to know times of divergence between species and to construct phylogenies calibrated to time (timetrees). Published studies reporting time estimates from molecular data have been increasing rapidly, but the data have been largely inaccessible to the greater community of scientists because of their complexity. TimeTree brings these data together in a consistent format and uses a hierarchical structure, corresponding to the tree of life, to maximize their utility. Results are presented and summarized, allowing users to quickly determine the range and robustness of time estimates and the degree of consensus from the published literature. TimeTree is available at http://www.timetree.net
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of retroviruses on host genome function.

            For millions of years, retroviral infections have challenged vertebrates, occasionally leading to germline integration and inheritance as ERVs, genetic parasites whose remnants today constitute some 7% to 8% of the human genome. Although they have had significant evolutionary side effects, it is useful to view ERVs as fossil representatives of retroviruses extant at the time of their insertion into the germline and not as direct players in the evolutionary process itself. Expression of particular ERVs is associated with several positive physiological functions as well as certain diseases, although their roles in human disease as etiological agents, possible contributing factors, or disease markers-well demonstrated in animal models-remain to be established. Here we discuss ERV contributions to host genome structure and function, including their ability to mediate recombination, and physiological effects on the host transcriptome resulting from their integration, expression, and other events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endogenous non-retroviral RNA virus elements in mammalian genomes.

              Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                12 August 2016
                August 2016
                : 12
                : 8
                : e1005785
                Affiliations
                [1 ]Nihon University Veterinary Research Center, Fujisawa, Kanagawa, Japan
                [2 ]Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
                [3 ]United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
                [4 ]Department of Animal Resource Science, College of Bioresource Sciences, Nihon Universitym, Fujisawa, Kanagawa, Japan
                [5 ]Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi, Japan
                University of Utah, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                • Conceived and designed the experiments: YK MH YS.

                • Performed the experiments: YK AN TI KM.

                • Analyzed the data: YK YS.

                • Contributed reagents/materials/analysis tools: YS KM.

                • Wrote the paper: YK MH KM TI YS.

                Article
                PPATHOGENS-D-16-00777
                10.1371/journal.ppat.1005785
                4982594
                27518265
                24927bde-0a67-4512-9163-62ae84b1f764
                © 2016 Kobayashi et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 April 2016
                : 1 July 2016
                Page count
                Figures: 10, Tables: 0, Pages: 21
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100007683, Nihon University;
                Award Recipient :
                Funded by: Strategic Research Base Development Program, “International joint research and training of young researchers for zoonosis control in a globalized world”, and a matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology of Japan
                Award ID: S1491007
                Award Recipient :
                This work was supported by research grants from College of Bioresource Sciences, Nihon University, and the Strategic Research Base Development Program, “International joint research and training of young researchers for zoonosis control in a globalized world”, and a matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology of Japan (S1491007) to YK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Bornaviruses
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Mammals
                Elephants
                Research and Analysis Methods
                Computational Techniques
                Split-Decomposition Method
                Multiple Alignment Calculation
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Protein Sequencing
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Protein Sequencing
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Alignment
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Alignment
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Messenger RNA
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                DNA construction
                Plasmid Construction
                Research and analysis methods
                Molecular biology techniques
                DNA construction
                Plasmid Construction
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article