0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical Composition, Antibacterial Test, and Antioxidant Activity of Essential Oils from Fresh and Dried Stropharia rugosoannulata

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The essential oils, respectively, from fresh and dried Stropharia rugosoannulata fruiting bodies, an important edible mushroom, have been studied for their chemical composition, antibacterial capacity, and antioxidant activity. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS) combined with Kovats retention index. The oils’ antibacterial test was evaluated by the microdilution method against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and antioxidant activity was determined through DPPH radical scavenging activity and ferric reducing power. Twenty-nine components were identified from the fresh mushroom, and the compositions were mainly dominated by hydrocarbons (54.72%), acids (32.99%), esters (5.07%), and terpenic compounds (0.96%). Thirty-five components were identified from the dried sample, and acids (31.22%), terpenic compounds (28.7%), alcohols (12.7%), and ketones (10.48%) were the major compounds. Strong antibacterial capacity and obvious antioxidant activity were observed for both essential oils from the fresh and dried mushrooms.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management.

          Staphylococcus aureus is a major human pathogen that causes a wide range of clinical infections. It is a leading cause of bacteremia and infective endocarditis as well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related infections. This review comprehensively covers the epidemiology, pathophysiology, clinical manifestations, and management of each of these clinical entities. The past 2 decades have witnessed two clear shifts in the epidemiology of S. aureus infections: first, a growing number of health care-associated infections, particularly seen in infective endocarditis and prosthetic device infections, and second, an epidemic of community-associated skin and soft tissue infections driven by strains with certain virulence factors and resistance to β-lactam antibiotics. In reviewing the literature to support management strategies for these clinical manifestations, we also highlight the paucity of high-quality evidence for many key clinical questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

            Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance and avoiding the spreading of resistant strains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment.

              Ester bond hydrolysis of membrane phospholipids by Phospholipase A(2) and consequent release of fatty acids are the initiating steps of inflammation. It is proposed in this study that the inhibition of phospholipase A(2) is one of the ways to control inflammation. Investigations are carried out to identify the mode of inhibition of phospholipase A(2) by the n-hexadecanoic acid. It may help in designing of specific inhibitors of phospholipase A(2) as anti-inflammatory agents. The enzyme kinetics study proved that n-hexadecanoic acid inhibits phospholipase A(2) in a competitive manner. It was identified from the crystal structure at 2.5 Å resolution that the position of n-hexadecanoic acid is in the active site of the phospholipase A(2). The binding constant and binding energy have also been calculated using Isothermal Titration Calorimetry. Also, the binding energy of n-hexadecanoic acid to phospholipase A(2) was calculated by in silico method and compared with known inhibitors. It may be concluded from the structural and kinetics studies that the fatty acid, n-hexadecanoic acid, is an inhibitor of phospholipase A(2), hence, an anti-inflammatory compound. The inferences from the present study validate the rigorous use of medicated oils rich in n-hexadecanoic acid for the treatment of rheumatic symptoms in the traditional medical system of India, Ayurveda. © 2012 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Chemistry
                Journal of Chemistry
                Wiley
                2090-9071
                2090-9063
                January 13 2023
                January 13 2023
                : 2023
                : 1-9
                Affiliations
                [1 ]Key Laboratory of Natural Products, Henan Academy of Sciences, Zhengzhou 450002, China
                [2 ]Electric Power Engineering School, Zhengzhou Electric Power College, Zhengzhou 450002, China
                Article
                10.1155/2023/6965755
                23f1b7c5-3387-43e0-91e9-6b7cbb21e0a1
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article