4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO.

      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ozonolysis of alkenes in the troposphere produces Criegee intermediates, which have eluded detection in the gas phase until very recently. This laboratory has synthesized the simplest Criegee intermediate within a quartz capillary tube affixed to a pulsed valve to cool and isolate CH(2)OO in a supersonic expansion. UV excitation resonant with the B (1)A' ← X (1)A' transition depletes the ground-state population of CH(2)OO, which is detected by single-photon ionization at 118 nm. The large UV-induced depletion (approaching 100%) near the peak of the profile at 335 nm is indicative of rapid dissociation, consistent with the repulsive B (1)A' potential along the O-O coordinate computed theoretically. The experimental spectrum is in very good accord with the absorption spectrum calculated using the one-dimensional reflection principle. The B ← X spectrum is combined with the solar actinic flux to estimate an atmospheric lifetime for CH(2)OO at midday on the order of ∼1 s with respect to photodissociation.

          Related collections

          Author and article information

          Journal
          23206289
          10.1021/ja310603j

          Comments

          Comment on this article

          scite_