2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Healthcare experiences among adults with hypermobile Ehlers-Danlos syndrome and hypermobility spectrum disorder in the United States

      1 , 1
      Disability and Rehabilitation
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Three approaches to qualitative content analysis.

          Content analysis is a widely used qualitative research technique. Rather than being a single method, current applications of content analysis show three distinct approaches: conventional, directed, or summative. All three approaches are used to interpret meaning from the content of text data and, hence, adhere to the naturalistic paradigm. The major differences among the approaches are coding schemes, origins of codes, and threats to trustworthiness. In conventional content analysis, coding categories are derived directly from the text data. With a directed approach, analysis starts with a theory or relevant research findings as guidance for initial codes. A summative content analysis involves counting and comparisons, usually of keywords or content, followed by the interpretation of the underlying context. The authors delineate analytic procedures specific to each approach and techniques addressing trustworthiness with hypothetical examples drawn from the area of end-of-life care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis

            As discussed in the previous statistical notes, although many statistical methods have been proposed to test normality of data in various ways, there is no current gold standard method. The eyeball test may be useful for medium to large sized (e.g., n > 50) samples, however may not useful for small samples. The formal normality tests including Shapiro-Wilk test and Kolmogorov-Smirnov test may be used from small to medium sized samples (e.g., n 2.1 Kurtosis is a measure of the peakedness of a distribution. The original kurtosis value is sometimes called kurtosis (proper) and West et al. (1996) proposed a reference of substantial departure from normality as an absolute kurtosis (proper) value > 7.1 For some practical reasons, most statistical packages such as SPSS provide 'excess' kurtosis obtained by subtracting 3 from the kurtosis (proper). The excess kurtosis should be zero for a perfectly normal distribution. Distributions with positive excess kurtosis are called leptokurtic distribution meaning high peak, and distributions with negative excess kurtosis are called platykurtic distribution meaning flat-topped curve. 2) Normality test using skewness and kurtosis A z-test is applied for normality test using skewness and kurtosis. A z-score could be obtained by dividing the skew values or excess kurtosis by their standard errors. As the standard errors get smaller when the sample size increases, z-tests under null hypothesis of normal distribution tend to be easily rejected in large samples with distribution which may not substantially differ from normality, while in small samples null hypothesis of normality tends to be more easily accepted than necessary. Therefore, critical values for rejecting the null hypothesis need to be different according to the sample size as follows: For small samples (n < 50), if absolute z-scores for either skewness or kurtosis are larger than 1.96, which corresponds with a alpha level 0.05, then reject the null hypothesis and conclude the distribution of the sample is non-normal. For medium-sized samples (50 < n < 300), reject the null hypothesis at absolute z-value over 3.29, which corresponds with a alpha level 0.05, and conclude the distribution of the sample is non-normal. For sample sizes greater than 300, depend on the histograms and the absolute values of skewness and kurtosis without considering z-values. Either an absolute skew value larger than 2 or an absolute kurtosis (proper) larger than 7 may be used as reference values for determining substantial non-normality. Referring to Table 1 and Figure 1, we could conclude all the data seem to satisfy the assumption of normality despite that the histogram of the smallest-sized sample doesn't appear as a symmetrical bell shape and the formal normality tests for the largest-sized sample were rejected against the normality null hypothesis. 3) How strict is the assumption of normality? Though the humble t test (assuming equal variances) and analysis of variance (ANOVA) with balanced sample sizes are said to be 'robust' to moderate departure from normality, generally it is not preferable to rely on the feature and to omit data evaluation procedure. A combination of visual inspection, assessment using skewness and kurtosis, and formal normality tests can be used to assess whether assumption of normality is acceptable or not. When we consider the data show substantial departure from normality, we may either transform the data, e.g., transformation by taking logarithms, or select a nonparametric method such that normality assumption is not required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 2017 international classification of the Ehlers-Danlos syndromes.

              The Ehlers-Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Over the past two decades, the Villefranche Nosology, which delineated six subtypes, has been widely used as the standard for clinical diagnosis of EDS. For most of these subtypes, mutations had been identified in collagen-encoding genes, or in genes encoding collagen-modifying enzymes. Since its publication in 1998, a whole spectrum of novel EDS subtypes has been described, and mutations have been identified in an array of novel genes. The International EDS Consortium proposes a revised EDS classification, which recognizes 13 subtypes. For each of the subtypes, we propose a set of clinical criteria that are suggestive for the diagnosis. However, in view of the vast genetic heterogeneity and phenotypic variability of the EDS subtypes, and the clinical overlap between EDS subtypes, but also with other HCTDs, the definite diagnosis of all EDS subtypes, except for the hypermobile type, relies on molecular confirmation with identification of (a) causative genetic variant(s). We also revised the clinical criteria for hypermobile EDS in order to allow for a better distinction from other joint hypermobility disorders. To satisfy research needs, we also propose a pathogenetic scheme, that regroups EDS subtypes for which the causative proteins function within the same pathway. We hope that the revised International EDS Classification will serve as a new standard for the diagnosis of EDS and will provide a framework for future research purposes. © 2017 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Disability and Rehabilitation
                Disability and Rehabilitation
                Informa UK Limited
                0963-8288
                1464-5165
                February 11 2023
                : 1-10
                Affiliations
                [1 ]Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
                Article
                10.1080/09638288.2023.2176554
                1f9631fd-8fd9-40bf-a98a-c7c3c2aea93d
                © 2023
                History

                Comments

                Comment on this article