34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical activity induced alterations of gut microbiota in humans: a systematic review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gut microbiota is considered to have a great impact on human health and disease. While it is widely recognized that the gut microbiota of healthy individuals differs from those with obesity, inflammatory bowel disease, metabolic syndrome, and other chronic diseases, the alterations of gut microbiota with physical activity are not fully understood. Accordingly, we performed this systematic review to address the question regarding the effects of mild and intense exercise on the gut microbiota in humans.

          Methods

          The comparative analyses of gut microbiota were conducted following the PRISMA protocol to determine the differences in the active vs. non-active individuals (phenotypes) ( n = 11), including the influence of physical activity intervention on the human gut microbiota ( n = 13); the differences in the gut microbiota of athletes vs. non-athletes ( n = 8); and the microbiota status at different stages of athletic performance or intervention ( n = 7), with various of physical activities, sport disciplines, and activity duration. Literature searches were completed using four databases: PubMed, Web of Science, Scopus, and EBSCO, and 2090 articles were retrieved by using appropriate keywords. The low heterogeneity of the studies hasn’t allowed us to prepare a meta-analysis. After excluding 2052 articles, we ultimately selected 38 articles that met the eligibility criteria for this review.

          Results

          The data analyses revealed that in non-athletes rising physical activity markedly influenced the relative abundance of short-chain fatty acid (SCFA). Aerobic training that lasted 60 min, and physical activity that characterized 60% HRmax or more also influenced beta diversity indexes. The results showed that athletes harbor a more diverse type of intestinal microflora than non-athletes, but with a relatively reduced abundance of SCFA- and lactic acid-producing bacteria, thereby suggesting an adverse effect of intense exercise on the population of gut microbiota.

          Conclusion

          It is concluded that the level of physical activity modulates the gastrointestinal microbiota in humans. For a long period, increasing the intensity and volume of exercise may lead to gut dysbiosis. Perhaps, proper supplementation should be considered to keep gut microbiota in large biodiversity and richness, especially under unfavorable gut conditions associated with intense exercise.

          Trial registration

          Prospero CRD42021264064.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The PRISMA 2020 statement: an updated guideline for reporting systematic reviews

          The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An obesity-associated gut microbiome with increased capacity for energy harvest.

            The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial ecology: human gut microbes associated with obesity.

              Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.
                Bookmark

                Author and article information

                Contributors
                hannadziewiecka@gmail.com
                hsbuttar@bell.net
                annakasperska.awf@gmail.com
                joanna.ostapiuk@gmail.com
                m.domaglaska@icloud.com
                cichonjustyna95@gmail.com
                ankass@poczta.onet.pl
                Journal
                BMC Sports Sci Med Rehabil
                BMC Sports Sci Med Rehabil
                BMC Sports Science, Medicine and Rehabilitation
                BioMed Central (London )
                2052-1847
                7 July 2022
                7 July 2022
                2022
                : 14
                : 122
                Affiliations
                [1 ]Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzów Wielkopolski, Poland
                [2 ]GRID grid.28046.38, ISNI 0000 0001 2182 2255, Department of Pathology & Laboratory Medicine, Faculty of Medicine, , University of Ottawa, ; Ottawa, ON K1H 8M5 Canada
                Author information
                http://orcid.org/0000-0002-9450-6832
                Article
                513
                10.1186/s13102-022-00513-2
                9264679
                35799284
                1e94b844-b02e-4bc7-9fd8-4c8a8f059ffd
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 7 April 2022
                : 22 June 2022
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2022

                gut microbiota,athletic performance,physical activity,gut permeability,leaky gut,microbiota composition,microbiota diversity,exercise

                Comments

                Comment on this article