38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health

      research-article
      EFSA Scientific Committee , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      EFSA Journal
      John Wiley and Sons Inc.
      nanoparticle, physico‐chemical characterisation, dietary exposure, nanotoxicology, safety assessment, testing strategy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA’s remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano‐RA), has taken account of relevant scientific studies that provide insights to physico‐chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle‐TR), the SC Guidance on Nano‐RA specifically elaborates on physico‐chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano‐RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read‐across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.

          Abstract

          This publication is linked to the following EFSA Journal article: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2021.6769/full

          This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2021.EN-6804/full

          Related collections

          Most cited references291

          • Record: found
          • Abstract: found
          • Article: not found

          A standardised static in vitro digestion method suitable for food - an international consensus.

          Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Guidance of the Scientific Committee on Transparency in the Scientific Aspects of Risk Assessments carried out by EFSA. Part 2: General Principles

            (2009)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.

              Nanoparticles in a biological fluid (plasma, or otherwise) associate with a range of biopolymers, especially proteins, organized into the "protein corona" that is associated with the nanoparticle and continuously exchanging with the proteins in the environment. Methodologies to determine the corona and to understand its dependence on nanomaterial properties are likely to become important in bionanoscience. Here, we study the long-lived ("hard") protein corona formed from human plasma for a range of nanoparticles that differ in surface properties and size. Six different polystyrene nanoparticles were studied: three different surface chemistries (plain PS, carboxyl-modified, and amine-modified) and two sizes of each (50 and 100 nm), enabling us to perform systematic studies of the effect of surface properties and size on the detailed protein coronas. Proteins in the corona that are conserved and unique across the nanoparticle types were identified and classified according to the protein functional properties. Remarkably, both size and surface properties were found to play a very significant role in determining the nanoparticle coronas on the different particles of identical materials. We comment on the future need for scientific understanding, characterization, and possibly some additional emphasis on standards for the surfaces of nanoparticles.
                Bookmark

                Author and article information

                Contributors
                sc.secretariat@efsa.europa.eu
                Journal
                EFSA J
                EFSA J
                10.1002/(ISSN)1831-4732
                EFS2
                EFSA Journal
                John Wiley and Sons Inc. (Hoboken )
                1831-4732
                03 August 2021
                August 2021
                : 19
                : 8 ( doiID: 10.1002/efs2.v19.8 )
                : e06768
                Author notes
                Article
                EFS26768
                10.2903/j.efsa.2021.6768
                8331059
                34377190
                1dc8ef5c-fd71-41c9-9192-3e0b1747a59d
                © 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

                History
                : 30 June 2021
                Page count
                Figures: 8, Tables: 6, Pages: 111, Words: 70319
                Categories
                Guidance
                Guidance
                Custom metadata
                2.0
                August 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.4 mode:remove_FC converted:03.08.2021

                nanoparticle,physico‐chemical characterisation,dietary exposure,nanotoxicology,safety assessment,testing strategy

                Comments

                Comment on this article