0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GaN technology is not only gaining traction in power and RF electronics but is also rapidly expanding into other application areas including digital and quantum computing electronics. This paper provides a glimpse of future GaN device technologies and advanced modeling approaches that can push the boundaries of these applications in terms of performance and reliability. While GaN power devices have recently been commercialized in the 15–900 V classes, new GaN devices are greatly desirable to explore both higher-voltage and ultra-low-voltage power applications. Moving into the RF domain, ultra-high frequency GaN devices are being used to implement digitized power amplifier circuits, and further advances using the hardware–software co-design approach can be expected. On the horizon is the GaN CMOS technology, a key missing piece to realize the full-GaN platform with integrated digital, power, and RF electronics technologies. Although currently a challenge, high-performance p-type GaN technology will be crucial to realize high-performance GaN CMOS circuits. Due to its excellent transport characteristics and ability to generate free carriers via polarization doping, GaN is expected to be an important technology for ultra-low temperature and quantum computing electronics. Finally, given the increasing cost of hardware prototyping of new devices and circuits, the use of high-fidelity device models and data-driven modeling approaches for technology-circuit co-design are projected to be the trends of the future. In this regard, physically inspired, mathematically robust, less computationally taxing, and predictive modeling approaches are indispensable. With all these and future efforts, we envision GaN to become the next Si for electronics.

          Related collections

          Most cited references254

          • Record: found
          • Abstract: not found
          • Article: not found

          Quantum supremacy using a programmable superconducting processor

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single gallium nitride nanowire lasers.

              There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Applied Physics
                AIP Publishing
                0021-8979
                1089-7550
                October 28 2021
                October 28 2021
                October 28 2021
                October 29 2021
                October 28 2021
                : 130
                : 16
                Article
                10.1063/5.0061555
                19f07731-642c-48a1-a60e-2b4a53996a37
                © 2021
                History

                Comments

                Comment on this article