0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TOI-332 b: a super dense Neptune found deep within the Neptunian desert

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Monthly Notices of the Royal Astronomical Society
      Oxford University Press (OUP)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          To date, thousands of planets have been discovered, but there are regions of the orbital parameter space that are still bare. An example is the short period and intermediate mass/radius space known as the ‘Neptunian desert’, where planets should be easy to find but discoveries remain few. This suggests unusual formation and evolution processes are responsible for the planets residing here. We present the discovery of TOI-332 b, a planet with an ultra-short period of 0.78 d that sits firmly within the desert. It orbits a K0 dwarf with an effective temperature of 5251 ± 71 K. TOI-332 b has a radius of $3.20^{+0.16}_{-0.12}\(R⊕, smaller than that of Neptune, but an unusually large mass of 57.2 ± 1.6 M⊕. It has one of the highest densities of any Neptune-sized planet discovered thus far at \)9.6^{+1.1}_{-1.3}$ g cm−3. A 4-layer internal structure model indicates it likely has a negligible hydrogen-helium envelope, something only found for a small handful of planets this massive, and so TOI-332 b presents an interesting challenge to planetary formation theories. We find that photoevaporation cannot account for the mass-loss required to strip this planet of the Jupiter-like envelope it would have been expected to accrete. We need to look towards other scenarios, such as high-eccentricity migration, giant impacts, or gap opening in the protoplanetary disc, to try and explain this unusual discovery.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: not found
          • Article: not found

          Astropy: A community Python package for astronomy

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            emcee: The MCMC Hammer

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                November 2023
                September 21 2023
                November 2023
                September 21 2023
                August 31 2023
                : 526
                : 1
                : 548-566
                Article
                10.1093/mnras/stad2575
                18d1bb6a-add9-4ba2-9d04-c44170533b7a
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article