11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeted delivery by either systemic or local targeting of therapeutics to the bone is an attractive treatment for various bone metabolism diseases such as osteoporosis, osteoarthritis, osteosarcoma, osteomyelitis, etc. To overcome the limitations of direct drug delivery, the combination of bone-targeted agents with nanotechnology has the opportunity to provide a more effective therapeutic approach, where engineered nanoparticles cause the drug to accumulate in the bone, thereby improving efficacy and minimizing side effects. Here, we summarize the current advances in systemic or local bone-targeting approaches and nanosystem applications in bone diseases, which may provide new insights into nanocarrier-delivered drugs for the targeted treatment of bone diseases. We envision that novel drug delivery carriers developed based on nanotechnology will be a potential vehicle for the treatment of currently incurable bone diseases and are expected to be translated into clinical applications.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis

          Osteoarthritis is a leading cause of disability and source of societal cost in older adults. With an ageing and increasingly obese population, this syndrome is becoming even more prevalent than in previous decades. In recent years, we have gained important insights into the cause and pathogenesis of pain in osteoarthritis. The diagnosis of osteoarthritis is clinically based despite the widespread overuse of imaging methods. Management should be tailored to the presenting individual and focus on core treatments, including self-management and education, exercise, and weight loss as relevant. Surgery should be reserved for those that have not responded appropriately to less invasive methods. Prevention and disease modification are areas being targeted by various research endeavours, which have indicated great potential thus far. This narrative Seminar provides an update on the pathogenesis, diagnosis, management, and future research on osteoarthritis for a clinical audience.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stimuli-responsive nanocarriers for drug delivery.

            Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell Membrane Coating Nanotechnology

              Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of different nanomaterials available to nanomedicine researchers, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. In this review, we provide a comprehensive overview on an emerging platform: cell membrane coating nanotechnology. As one of the most fundamental units in biology, a cell carries out a wide range of functions, including its remarkable ability to interface and interact with its surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment the potency and safety of existing nanocarriers. Further, the introduction of a natural membrane substrate onto the surface of a nanoparticle has enabled additional applications beyond those already associated with the field of nanomedicine. Despite the relative youth of the cell membrane coating technique, there exists an impressive body of literature on the topic, which will be covered in detail in this review. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this emerging technology. Cell membrane coating is an emerging nanotechnology. By cloaking nanomaterials in a layer of natural cell membrane, which can be derived from a variety of cell types, it is possible to fabricate nanoplatforms with enhanced surface functionality. This can lead to increased nanoparticle performance in complex biological environments, which can benefit applications like drug delivery, imaging, phototherapies, immunotherapies, and detoxification.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                31 May 2022
                2022
                : 13
                : 909408
                Affiliations
                [1] 1 Institute of Translational Medicine , Shanghai University , Shanghai, China
                [2] 2 School of Medicine , Shanghai University , Shanghai, China
                [3] 3 School of Life Sciences , Shanghai University , Shanghai, China
                [4] 4 Department of Orthopedics , Shanghai Zhongye Hospital , Shanghai, China
                Author notes

                Edited by: Fenghua Meng, Soochow University, China

                Reviewed by: Rajendra Kumar Singh, Institute of Tissue Regeneration Engineering (ITREN), South Korea

                Cijun Shuai, Jiangxi University of Science and Technology, China

                *Correspondence: Yingying Jiang, yjiang8@ 123456shu.edu.cn ; Ke Xu, kexu@ 123456shu.edu.cn ; Jiacan Su, drsujiacan@ 123456163.com
                [ † ]

                These authors have contributed equally to this work

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                909408
                10.3389/fphar.2022.909408
                9195145
                35712701
                17f15324-3b85-4c35-a3f2-80c0f412c475
                Copyright © 2022 Chen, Wu, Li, Jiang, Xu and Su.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 March 2022
                : 27 April 2022
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                bone targeted,drug delivery,bone diseases,nanoparticles,stimulus-responsive

                Comments

                Comment on this article