12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mapping cell types across a tissue is a central concern of spatial biology, but cell type abundance is difficult to extract from spatial gene expression data. We introduce SpatialDecon, an algorithm for quantifying cell populations defined by single cell sequencing within the regions of spatial gene expression studies. SpatialDecon incorporates several advancements in gene expression deconvolution. We propose an algorithm harnessing log-normal regression and modelling background, outperforming classical least-squares methods. We compile cell profile matrices for 75 tissue types. We identify genes whose minimal expression by cancer cells makes them suitable for immune deconvolution in tumors. Using lung tumors, we create a dataset for benchmarking deconvolution methods against marker proteins. SpatialDecon is a simple and flexible tool for mapping cell types in spatial gene expression studies. It obtains cell abundance estimates that are spatially resolved, granular, and paired with highly multiplexed gene expression data.

          Abstract

          The deconvolution of cell types is challenging in spatially-resolved transcriptomics. Here, the authors present SpatialDecon, a method for the deconvolution and quantification of cell types in spatial transcriptomics data, and show how it can be used to analyse immune response heterogeneity in cancer.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Robust enumeration of cell subsets from tissue expression profiles

          We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Double-slit photoelectron interference in strong-field ionization of the neon dimer

            Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              xCell: digitally portraying the tissue cellular heterogeneity landscape

              Tissues are complex milieus consisting of numerous cell types. Several recent methods have attempted to enumerate cell subsets from transcriptomes. However, the available methods have used limited sources for training and give only a partial portrayal of the full cellular landscape. Here we present xCell, a novel gene signature-based method, and use it to infer 64 immune and stromal cell types. We harmonized 1822 pure human cell type transcriptomes from various sources and employed a curve fitting approach for linear comparison of cell types and introduced a novel spillover compensation technique for separating them. Using extensive in silico analyses and comparison to cytometry immunophenotyping, we show that xCell outperforms other methods. xCell is available at http://xCell.ucsf.edu/. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1349-1) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                pdanaher@nanostring.com
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                19 January 2022
                19 January 2022
                2022
                : 13
                : 385
                Affiliations
                GRID grid.510973.9, ISNI 0000 0004 5375 2863, NanoString Technologies, ; Seattle, WA USA
                Author information
                http://orcid.org/0000-0002-2844-5883
                http://orcid.org/0000-0002-6577-8943
                http://orcid.org/0000-0002-3263-5946
                Article
                28020
                10.1038/s41467-022-28020-5
                8770643
                35046414
                16507803-ecb2-42d6-9bd8-82907300f2e6
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 January 2021
                : 10 December 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                tumour immunology,computational models,statistical methods,cancer genomics,transcriptomics

                Comments

                Comment on this article