8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental study of nonclassical teleportation beyond average fidelity

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum teleportation establishes a correspondence between an entangled state shared by two separate par- ties that can communicate classically and the presence of a quantum channel connecting the two parties. The standard benchmark for quantum teleportation, based on the average fidelity between the input and output states, indicates that some entangled states do not lead to channels which can be certified to be quantum. It was re- cently shown that if one considers a finer-tuned witness, then all entangled states can be certified to produce a non-classical teleportation channel. Here we experimentally demonstrate a complete characterization of a new family of such witnesses, of the type proposed in Phys. Rev. Lett. 119, 110501 (2017) under different con- ditions of noise. Furthermore, we show non-classical teleportation using quantum states that can not achieve average teleportation fidelity above the classical limit. Our results have fundamental implications in quantum information protocols and may also lead to new applications and quality certification of quantum technologies.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum teleportation between light and matter

          , , (2006)
          Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved. Here we demonstrate teleportation between objects of a different nature - light and matter, which respectively represent 'flying' and 'stationary' media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 10^12 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58+-0.02 for n=20 and 0.60+-0.02 for n=5 - higher than any classical state transfer can possibly achieve. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum teleportation using active feed-forward between two Canary Islands

            Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long distance quantum teleportation of qubits from photons at 1300 nm to photons at 1550 nm wavelength

              , , (2003)
              Elementary 2-dimensional quantum states (qubits) encoded in 1300 nm wavelength photons are teleported onto 1550 nm photons. The use of telecommunication wavelengths enables to take advantage of standard optical fibre and permits to teleport from one lab to a distant one, 55 m away, connected by 2 km of fibre. A teleportation fidelity of 81.2 % is reported. This is large enough to demonstrate the principles of quantum teleportation, in particular that entanglement is exploited. This experiment constitutes a first step towards a quantum repeater.
                Bookmark

                Author and article information

                Journal
                27 February 2018
                Article
                1802.10056
                10de125c-ad88-45b8-8bf4-40c3894fbf4f

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                5 pages + Supp. Materials
                quant-ph

                Comments

                Comment on this article