18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes

      ,
      Nature Climate Change
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          An Earth-system perspective of the global nitrogen cycle.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              N : P ratios in terrestrial plants: variation and functional significance

              Nitrogen (N) and phosphorus (P) availability limit plant growth in most terrestrial ecosystems. This review examines how variation in the relative availability of N and P, as reflected by N : P ratios of plant biomass, influences vegetation composition and functioning. Plastic responses of plants to N and P supply cause up to 50-fold variation in biomass N : P ratios, associated with differences in root allocation, nutrient uptake, biomass turnover and reproductive output. Optimal N : P ratios - those of plants whose growth is equally limited by N and P - depend on species, growth rate, plant age and plant parts. At vegetation level, N : P ratios <10 and >20 often (not always) correspond to N- and P-limited biomass production, as shown by short-term fertilization experiments; however long-term effects of fertilization or effects on individual species can be different. N : P ratios are on average higher in graminoids than in forbs, and in stress-tolerant species compared with ruderals; they correlate negatively with the maximal relative growth rates of species and with their N-indicator values. At vegetation level, N : P ratios often correlate negatively with biomass production; high N : P ratios promote graminoids and stress tolerators relative to other species, whereas relationships with species richness are not consistent. N : P ratios are influenced by global change, increased atmospheric N deposition, and conservation managment. Contents Summary 243 I Introduction 244 II Variability of N : P ratios in response to nutrient  supply 244 III Critical N : P ratios as indicators of nutrient  limitation 248 IV Interspecific variation in N : P ratios 252 V Vegetation properties in relation to N : P ratios 255 VI Implications of N : P ratios for human impacts  on ecosystems 258 VII Conclusions 259 Acknowledgements 259 References 260.
                Bookmark

                Author and article information

                Journal
                Nature Climate Change
                Nature Climate change
                Springer Nature
                1758-678X
                1758-6798
                March 9 2015
                March 9 2015
                : 5
                : 5
                : 465-469
                Article
                10.1038/nclimate2549
                0394a5f8-87ed-48a2-b0b7-892d2854462c
                © 2015
                History

                Comments

                Comment on this article