347
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An Earth-system perspective of the global nitrogen cycle

      ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Primary production of the biosphere: integrating terrestrial and oceanic components

          Integrating conceptually similar models of the growth of marine and terrestrial primary producers yielded an estimated global net primary production (NPP) of 104.9 petagrams of carbon per year, with roughly equal contributions from land and oceans. Approaches based on satellite indices of absorbed solar radiation indicate marked heterogeneity in NPP for both land and oceans, reflecting the influence of physical and ecological processes. The spatial and temporal distributions of ocean NPP are consistent with primary limitation by light, nutrients, and temperature. On land, water limitation imposes additional constraints. On land and ocean, progressive changes in NPP can result in altered carbon storage, although contrasts in mechanisms of carbon storage and rates of organic matter turnover result in a range of relations between carbon storage and changes in NPP.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nitrogen Cycles: Past, Present, and Future

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems.

              Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                January 2008
                January 16 2008
                January 2008
                : 451
                : 7176
                : 293-296
                Article
                10.1038/nature06592
                18202647
                d8edcb9b-301c-419d-b76f-76b20c736331
                © 2008

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article