Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Invasive carcinoma segmentation in whole slide images using MS-ResMTUNet

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identifying the invasive cancer area is a crucial step in the automated diagnosis of digital pathology slices of the breast. When examining the pathological sections of patients with invasive ductal carcinoma, several evaluations are required specifically for the invasive cancer area. However, currently there is little work that can effectively distinguish the invasive cancer area from the ductal carcinoma in situ in whole slide images. To address this issue, we propose a novel architecture named ResMTUnet that combines the strengths of vision transformer and CNN, and uses multi-task learning to achieve accurate invasive carcinoma recognition and segmentation in breast cancer. Furthermore, we introduce a multi-scale input model based on ResMTUnet with conditional random field, named MS-ResMTUNet, to perform segmentation on WSIs. Our systematic experimentation has shown that the proposed network outperforms other competitive methods and effectively segments invasive carcinoma regions in WSIs. This lays a solid foundation for subsequent analysis of breast pathological slides in the future. The code is available at: https://github.com/liuyiqing2018/MS-ResMTUNet

          Highlights

          • We introduce Transformer architecture in IC segmentation, combining it with CNN for a dual-branch encoder.

          • We consider other categories prone to confusion with IC, using a classification branch for effective differentiation.

          • We incorporate multi-scale and CRF techniques to enhance WSI inference in our model.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Attention Is All You Need

            The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 15 pages, 5 figures
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              QuPath: Open source software for digital pathology image analysis

              QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, extensible, open-source solution for digital pathology and whole slide image analysis. In addition to offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an extensible platform with which to develop and share new algorithms to analyze complex tissue images. Furthermore, QuPath’s flexible design makes it suitable for a wide range of additional image analysis applications across biomedical research.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                19 February 2024
                29 February 2024
                19 February 2024
                : 10
                : 4
                : e26413
                Affiliations
                [a ]Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
                [b ]Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
                Author notes
                Article
                S2405-8440(24)02444-7 e26413
                10.1016/j.heliyon.2024.e26413
                11636800
                39670062
                039410f5-e315-49d4-bbca-4d77da88db4a
                © 2024 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 September 2023
                : 12 February 2024
                : 13 February 2024
                Categories
                Research Article

                invasive carcinoma segmentation,whole slide image,transformer,conditional random field,multi-task learning

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content120

                Most referenced authors10,505