36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galβ1,4Manα1-PO 4 units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification.

          Author Summary

          Upon their internalization by macrophages, Leishmania donovani promastigotes inhibit phagolysosome biogenesis. This inhibition is mediated by the virulence glycolipid lipophosphoglycan (LPG), attached to the promastigote surface. We recently showed that the exocytosis regulator Synaptotagmin (Syt) V controls early steps of phagocytosis, and remains associated to the phagosome during the maturation process. Here, we show that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of the hydrolase cathepsin D and the vesicular proton-ATPase. Insertion of LPG into lipid microdomains of the phagosome membrane excluded Syt V from phagosomes, enabling L. donovani promatigotes to inhibit the recruitment of the vesicular proton-ATPase to phagosomes, preventing their acidification. Collectively, our results provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes and reveal how the virulence glycolipid LPG contributes to the mechanism of L. donovani pathogenesis by preventing phagosome acidification.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Phagosome maturation: aging gracefully.

          Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Phagosome Proteome

            Phagosomes are key organelles for the innate ability of macrophages to participate in tissue remodeling, clear apoptotic cells, and restrict the spread of intracellular pathogens. To understand the functions of phagosomes, we initiated the systematic identification of their proteins. Using a proteomic approach, we identified >140 proteins associated with latex bead–containing phagosomes. Among these were hydrolases, proton pump ATPase subunits, and proteins of the fusion machinery, validating our approach. A series of unexpected proteins not previously described along the endocytic/phagocytic pathways were also identified, including the apoptotic proteins galectin3, Alix, and TRAIL, the anti-apoptotic protein 14-3-3, the lipid raft-enriched flotillin-1, the anti-microbial molecule lactadherin, and the small GTPase rab14. In addition, 24 spots from which the peptide masses could not be matched to entries in any database potentially represent new phagosomal proteins. The elaboration of a two-dimensional gel database of >160 identified spots allowed us to analyze how phagosome composition is modulated during phagolysosome biogenesis. Remarkably, during this process, hydrolases are not delivered in bulk to phagosomes, but are instead acquired sequentially. The systematic characterization of phagosome proteins provided new insights into phagosome functions and the protein or groups of proteins involved in and regulating these functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus

              We have examined the modifications occurring during the transformation of phagosomes into phagolysosomes in J-774 macrophages. The use of low density latex beads as markers of phagosomes (latex bead compartments, LBC) allowed the isolation of these organelles by flotation on a simple sucrose gradient. Two-dimensional gel electrophoresis, immunocytochemistry, and biochemical assays have been used to characterize the composition of LBC at different time points after their formation, as well as their interactions with the organelles of the endocytic pathway. Our results show that LBC acquire and lose various markers during their transformation into phagolysosomes. Among these are members of the rab family of small GTPases as well as proteins of the lamp family. The transfer of the LBC of lamp 2, a membrane protein associated with late endocytic structures, was shown to be microtubule dependent. Video-microscopy showed that newly formed phagosomes were involved in rapid multiple contacts with late components of the endocytic pathway. Collectively, these observations suggest that phagolysosome formation is a highly dynamic process that involves the gradual and regulated acquisition of markers from endocytic organelles.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2009
                October 2009
                16 October 2009
                : 5
                : 10
                : e1000628
                Affiliations
                [1 ]INRS-Institut Armand-Frappier and Centre for Host-Parasite Interactions, Laval, Québec, Canada
                [2 ]Department of Developmental Biology and Neurosciences, Tohoku University, Sendai, Miyagi, Japan
                [3 ]Department of Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
                Seattle Biomedical Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: AFV AD. Performed the experiments: AFV. Analyzed the data: AFV AD. Contributed reagents/materials/analysis tools: MF SJT. Wrote the paper: AFV AD.

                Article
                09-PLPA-RA-0723R3
                10.1371/journal.ppat.1000628
                2757729
                19834555
                00d9f300-54c2-47b0-8cfb-9911f1b0801a
                Vinet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 May 2009
                : 23 September 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology/Membranes and Sorting
                Immunology/Innate Immunity
                Immunology/Leukocyte Development
                Infectious Diseases/Protozoal Infections
                Microbiology/Cellular Microbiology and Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article