9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coinfections in the lung: How viral infection creates a favorable environment for bacterial and fungal infections

      review-article
      1 , 2 , * ,
      PLOS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction While it is well established that secondary bacterial pneumonia plays a significant role in the morbidity and mortality of patients with severe respiratory viral infections, bacteria are not the only threat for these patients. Over the last decade, there has been a rise in the number of patients with severe respiratory viral infections acquiring secondary fungal infections, specifically with the filamentous mold Aspergillus fumigatus [1,2]. Importantly, while secondary fungal infections occur less frequently than secondary bacterial pneumonias, they are associated with greater mortality [1]. Because immune suppression is the major risk factor for acquiring fungal infections [3], severe respiratory viral infections may create a transient immune suppressed state allowing for these secondary infections to occur. Here, we discuss what we have learned about how antiviral host responses create a lung environment susceptible to bacterial infection and how this may translate into fungal susceptibility. Viral infection “aftershocks” Many of the physiologic and immunologic outcomes in the lung resulting from respiratory viral infection, especially with influenza viruses, are well established as to their role in secondary bacterial infection susceptibility and beginning to be elucidated for secondary fungal infections. Without going into great depth, as these were just recently reviewed elsewhere [4], Fig 1 portrays some of these physiological and immunological mechanisms altered in the lungs. The physiological consequences from respiratory viral infection include epithelial damage (morphology changes, leakage, apoptosis), altered airway function (loss of cilia, increased mucus), and delayed repair (fibrosis) (Fig 1A). The immunological consequences from respiratory viral infections are slightly more complicated, but include recognition (decreased pattern recognition receptors), inflammation (anti-inflammatory skewed), cell function (decreased phagocytosis, impaired ROS production, inhibition of activation), and changes in cell type (loss of alveolar macrophages, hyperactivated inflammatory monocytes, decreased leukocyte recruitment) (Fig 1B). Recently, a transcriptional analysis of human lower respiratory tract samples from influenza-associated pulmonary aspergillosis (IAPA) patients suggested there is a three-level breach in antifungal immunity, including phagocytosis, killing of conidia/hyphae, and epithelial damage [5]. While this study provides a beginning foundation of the antiviral outcomes clinically associated with IAPA, there remains many unknowns. Thus, we will describe different aspects from these outcomes and how they may be involved in creating a lung environment permissive to fungal infection. 10.1371/journal.ppat.1011334.g001 Fig 1 Graphic of the major physiologic and immunologic consequences from viral infection found to be involved in secondary bacterial susceptibility described in [4]. (A) The physiological consequences from viral infection include (1) epithelial damage/death (morphology changes, apoptosis), (2) airway function (loss of cilia, increased mucus), (3) airway leakage (loss of tight junctions), and (4) delayed repair (fibrosis). (B) Normal antifungal immune response to Aspergillus conidia (I) may be altered by respiratory viral infection leading to invasive disease (fungal biofilm formation) (II). The immunological consequences from viral infection include (1) depletion of alveolar macrophages, (2) anti-inflammatory skewed, (3) over-activated inflammatory monocytes, (4) recognition (decreased PRRs), (5 and 6) antifungal effector mechanisms (decreased ROS, increased NETs), (7 and 8) decreased cell recruitment and chemokines/cytokines. This figure was exported under a paid subscription. Created with BioRender.com. Aspect 1: Physiological A key fundamental difference between the bacteria associated with secondary infections (Staphylococcus spp. and Streptococcus spp.) [6] and Aspergillus spp. is that molds are saprophytic organisms. Survival and growth of molds rely upon degradation of their surrounding environment, indicating their ability to grow in harsh conditions. Proteases and other secondary metabolites important for nutrient acquisition by Aspergillus spp. have been shown to be necessary for pathogenesis [7,8]. Many of the antiviral responses described above (Fig 1B) contribute to creating damage, mostly physical in nature, within the lung. This damaged, “decomposed-like” environment likely contributes to the success of Aspergillus spp. in the post-viral infection lung, supported by the observation of fungal growth occurring near epithelial damage in patients with COVID-19-associated pulmonary aspergillosis (CAPA) [5] and IAPA [9]. Specifically, nutrients are easier to obtain due to both the death of epithelial and immune cells together with vasculature and epithelial leakage, making macromolecules (sugars, amino acids) and essential nutrients (iron and zinc [10]) more available. Beyond the access to “free” nutrients, the ability to adapt to changing conditions plays a major role in Aspergillus spp. being able to establish an infection. Damage and inflammation in the lung leads to decreased oxygen availability [4]. Aspergillus spp. in general, but specifically known for A. fumigatus, adapt quickly and efficiently to low oxygen environments [11,12]. This adaptation helps thwart immune attacks and resist antifungal drugs due to cell wall architecture changes that make it harder to penetrate and harm A. fumigatus [11]. Additionally, A. fumigatus can grow under low oxygen conditions [12], providing another edge in this environment. Overall, from what is known about the damaged lung environment resulting from a viral infection, this suggests that it provides a prime environment for the establishment and growth of fungi. Aspect 2: Immunological It is not surprising that many of the antibacterial innate mechanisms rendered nonfunctional or skewed because of a primary viral infection (Fig 1) can also be involved in secondary fungal infection susceptibility, as innate mechanisms are generally nonspecific. However, there are many aspects of fungi that are not shared with the bacteria associated with secondary infections. Some unique differences include the transition of fungal organisms in the host into different morphological states and, importantly, that fungi have unique surface components used by the host for recognition [13–15]. These aspects influence the host immunological response and so here, we will discuss how these differences may have an impact on secondary fungal infection susceptibility as it relates to Aspergillus. We can think of infections with Aspergillus spp. as a sprint between the innate immune system and the growth of the fungus. Aspergillus spp. transition through 3 major growth stages during infection, starting at resting, dormant conidia, transitioning to swollen conidia, and finally germinating into hyphae forming a fungal biofilm. There are tools the immune system uses for each growth stage, but ultimately, preventing invasive hyphal growth is the most important for survival. This is most effectively accomplished by killing the conidia. Alveolar macrophages act as the first line of defense in the lung airways, ingesting and killing Aspergillus conidia. When alveolar macrophages are functionally impaired due to corticosteroid treatment [16], loss of NADPH oxidase activity [8], or loss of MAVS signaling [17] it results in increased susceptibility to A. fumigatus challenge. Respiratory virus infection can mediate depletion of alveolar macrophages [4] that may provide an opportunity for Aspergillus spp. to get a foothold in the lung. Recruited inflammatory monocytes and neutrophils are critical for control and clearance of conidia during A. fumigatus infection [18]. Based on what we know from secondary bacterial infections, decreased alveolar macrophages, disrupted epithelium, and dampened inflammation affects activation and recruitment of these effector cells [4]. This is likely true for secondary fungal infections as lung epithelial cells play an important role in protection to Aspergillus infections through induction of chemokines that lead to efficient recruitment of these cells [19]. Pro-inflammatory mediators, such as IL-1α, IL-1β, TNFα, and CXCL1, specifically produced by the lung epithelium, are required for providing protection from Aspergillus spp. infections, via cell activation and recruitment, and in their absence, invasive disease and mortality occur [20]. Therefore, damaged/dead epithelium as a result of viral infections is also likely to contribute to immunological deficiencies (not just physiological) leading to fungal susceptibility. Recently, it was found that decreased neutrophil recruitment following A. fumigatus infection in mice post-influenza resulted in increased susceptibility [21], but others have not observed this in mice [22] or humans [5,23], suggesting further defects in antifungal immunity must exist following viral infection. Concerning antifungal mediators, our recent data demonstrates that antifungal killing is decreased following influenza infection [22]. Mechanistically, both ROS-dependent and -independent pathways have been shown to be critical for host resistance against A. fumigatus, both of which can be impaired by viral infection [4,20]. ROS production and phagocytosis from inflammatory monocytes [18] and neutrophils is important for preventing conidial germination into hyphae, upon which phagocytosis becomes impossible. Neutrophil NETosis can also act as an antifungal mechanism for controlling Aspergillus hyphae [24]. However, increased production of NETs from post-viral neutrophils may add to the damage, as found with acute lung injury models [25], rather than enhancing clearance of Aspergillus during secondary infection. Importantly, we demonstrated that ROS-independent mechanisms of antifungal immunity are impacted by prior viral infection [22], specifically impaired phagolysosome maturation. Supporting these murine model results, Feys and colleagues found impaired neutrophil degranulation and LC3-phagolysosome-associated transcriptional signature in humans with IAPA [5]. Additionally, B1a-dependent natural IgG antibodies were found to mediate protection via neutrophil phagocytosis of Aspergillus, during both IAPA and CAPA, but also following corticosteroid treatment [23]. Decreased levels of PRRs following a viral infection, including multiple TLRs and RIG-I, are associated with poor outcome to secondary bacterial infections [4]. We, and others, have demonstrated that there is transcriptional down-regulation of TLR9/Irak4 [22] and TLR2 [5] in mice and humans with IAPA, respectively. Although these PRRs have a role in antifungal immunity [20], it remains unknown whether there is a direct role during IAPA. Additionally, C-type lectin receptors (CLRs) are critical for protection and survival from fungal infections [26]. CLRs distinguish conserved PAMPs found in the cell wall of fungal pathogens, eliciting antifungal-specific innate immune responses, and shaping the adaptive immune response. An ex vivo infection model of human alveolar macrophages found decreased expression of CLEC7A, an essential CLR required for a protective antifungal response, following influenza infection [27]. However, there remains very little known about what happens to CLR signaling during influenza infection and its involvement in IAPA. Perspectives Importantly, many of the classical clinical risk factors normally associated with an elevated risk of patients developing Aspergillosis [3] are not common among the patients acquiring IAPA/CAPA. This results in decreased testing, misdiagnosis, and delayed antifungal treatments. For the patient, this could be detrimental because delayed treatment may provide Aspergillus spp. time to grow into a more robust biofilm, which is more resistant to the limited antifungal drugs available for treatment. While we do not know the full scope of occurrence of IAPA/CAPA, understanding how these Aspergillus spp. infections occur is critically important. As described here, many of the aspects from viral infections have implications in antifungal immunity. It is likely that susceptibility to IAPA requires a combination of these physiologic and immunologic antiviral outcomes. Further, with high mortality rates (40% to 90%) and limited, and toxic antifungal treatments [3], it is imperative that we find ways to prevent and treat IAPA [9]. Because this is a relatively new and expanding research field, there remains much to be discovered about why viral infections lead to fungal susceptibility. One important area of research that needs to be addressed is determining how data from clinical cohort studies, including the gene expression data described above, translates into post-viral fungal pneumonia susceptibility. Here, the recently developed mouse models of IAPA [21–23] will be critical for our basic mechanistic understanding of IAPA, as well as providing a preclinical model for interventional studies. Are there common antifungal mechanisms that are suppressed by viral infection (e.g., CLRs, TH17 responses, phagosome)? How does the environment of a post-viral lung contribute (e.g., epithelial damage, nutrients) to susceptibility to fungal challenge? Because both Influenza and SARS-CoV-2 act as a risk factor, are there viral-specific immune suppression mechanisms? Additionally, due to the heterogeneity of A. fumigatus strains, an important question that remains open is, are susceptibility and outcome strain dependent [28]? Finally, how can antiviral, antifungal, and anti-inflammatory treatments impact the IAPA outcomes needs to be more thoroughly explored, as early amphotericin B treatment [29] or oseltamivir [9] treatment improved clinical outcomes in preclinical models. Overall, we need to expand our knowledge of the host–fungal interaction in this post-viral environment to foster the development of fungal- and host-directed therapies.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Aspergillus fumigatus and Aspergillosis in 2019

          Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus ; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA

            Introduction Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Conidia, the asexually produced small fungal spores, are inhaled and reach the lung alveoli, where they are confronted with the first line of defence which is built up of resident alveolar macrophages and newly recruited neutrophil granulocytes (neutrophils). Conidia are thought to be killed by macrophages whereas hyphae are mainly attacked by neutrophils (reviewed in: [1]–[3]). However, recruited neutrophils are also able to phagocytose conidia directly [4], [5] or prevent their germination as shown by Bonnett et al. [6]. Furthermore, the essential role of neutrophils in preventing invasive growth of A. fumigatus has recently been proven [7]. Nevertheless, the detailed mechanisms how these immune effector cells protect the human host against A. fumigatus are still a matter of debate. The NAD(P)H oxidase in phagocytes is regarded to be essential for host defence against aspergillosis. This idea is supported by the fact that patients with chronic granulomatous disease are highly susceptible to fungal diseases, especially Aspergillus infections. Neutrophils of these patients show markedly deficient NAD(P)H oxidase activity [8]. The activation of NAD(P)H oxidase results in the formation of superoxide anions and other reactive oxygen intermediates (ROI) (reviewed in [1]). However although the catalase or yap1 and skn7 mutants display an increased sensitivity to ROIs in vitro, these detoxifying systems of A. fumigatus do not play any role in controlling the killing of A. fumigatus conidia by phagocytes in vivo [9]. Consequently, the production of ROI by the host may be important for control of Aspergillus on a level distinct from direct killing. This result is in agreement with recent findings that the granule proteins in neutrophils are primarily responsible for the killing process of microbes while ROI only function by activating vacuolar enzymes [10], [11]. The contribution of NAD(P)H oxidase in killing conidia in macrophages, as shown for A. fumigatus [12], may be indirect by depolarising the phagocytic vacuole, leading to an influx of ions which results in the activation of digestion enzymes, as proposed by Segal [11]. The importance of vacuolar enzymes for fungal defence is also supported by the finding that knock-out mice lacking cathepsin G and elastase were found to be susceptible to Aspergillus infection [13]. Hence, the mechanism how the innate immune systems effectively counteracts spores and germlings of A. fumigatus has to be further elucidated with a focus on killing mechanisms independent of direct ROI-mediated destruction. In the light of these observations the identification of extracellular fibres called neutrophil extracellular traps (NETs), which are produced as a final act of defence by dying neutrophils may be of major importance [14]. NETs are composed of chromatin covered with granular proteins which express antimicrobial activity. The process of NET formation depends on the induction of a ROI-mediated signaling cascade in neutrophils that ends up in the disintegration of the nuclear envelope and granular membranes [15]. After membrane rupture the NETs are formed by intracellular mixture of nuclear DNA with granular contents and then explosively released in a matter of seconds, a process that is associated with cell death. This unique sequence of events is also called NETosis (reviewed in [16]). NETs may mediate the trapping of conidia of A. fumigatus [17], as it has been shown for the yeast form and hyphal cells of C. albicans [18] and for A. nidulans [19]. Although NETs are an attractive model to explain defence against A. fumigatus, direct proof of their existence and importance in vivo is still lacking. The restoration of NAD(P)H oxidase activity in hematopoietic stem cells of a human CGD patient by gene transfer has been shown to re-establish NETosis in neutrophils derived from these cells in vitro and restore fungal defence against A. nidulans in the treated patient. However, the re-establishment of NET formation in this patient in vivo as basis for successful fungal defence could not be demonstrated directly and thus remained a matter of speculation [19]. Furthermore, the importance of NETosis for the defence against the clinically much more relevant A. fumigatus still lacks experimental proof. Finally, molecular determinants of fungal pathogens that control or induce the production of NETs by binding neutrophils are so far entirely unknown. To get a better understanding of these issues, we set out to comprehensively study whether the different morphotypes of A. fumigatus have the potential to induce NETs in vitro. Furthermore, we aimed at shedding light on molecular mechanisms involved. Finally we wanted to clarify, whether NETs are really formed in Aspergillus-infected lungs and whether this is dependent on newly arriving neutrophils. Results Human neutrophils produce extracellular traps when encountering different A. fumigatus morphotypes To analyse whether A. fumigatus induced the production of NETs by human neutrophils, different morphotypes of A. fumigatus, i.e. resting or swollen conidia and hyphae, were co-incubated with human neutrophils for different time periods. Confocal images of cultures stained with propidium iodide and calcofluor white during co-incubation showed, that freshly isolated non-prestimulated neutrophils produced typical NET structures against all morphotypes within three hours (Figure 1 and Figure S1). NET formation started with a rapid enlargement of the neutrophils followed by their final burst. NET formation was visible after 120 min and increased during the following hour of co-incubation (Figure 1, 3A and Video S1). Activation of neutrophils in vitro using phorbol-12-myristate-13-acetate (PMA) enhanced this effect (data not shown). Neutrophils alone without fungi or during co-incubation with latex beads did not produce NETs (Figure S1). 10.1371/journal.ppat.1000873.g001 Figure 1 NET formation by human neutrophils co-incubated with resting and swollen conidia or hyphae of A. fumigatus. CLSM fluorescence, bright field and overlay images showing NET formation of human neutrophils after co-incubation with A. fumigatus. Extracellular DNA was stained with propidium iodide (red), conidia and hyphae with calcofluor white (blue). Microscopic pictures were taken after 3 hours. Neutrophils were co-incubated with resting conidia (A), swollen conidia (B) and hyphae (C). All scale bars represent 20 µm length. Scanning electron microscopy further revealed the intimate contact between neutrophils and the three morphotypes (Figure 2). Furthermore, it showed the formation of typical NET structures with the different morphological characteristics defined by Brinkmann and Zychlinsky [16], i.e., cables, threads and globular domains (Figure 2C3). The architecture of NETs was thus similar to that seen for NETs induced by other pathogens like Shigella flexneri [19]. This suggested, that the overall architecture of NETs is fixed, irrespective of the pathogenic microorganism which was encountered by neutrophils. 10.1371/journal.ppat.1000873.g002 Figure 2 Scanning electron microscopy (SEM) micrographs of conidia and hyphae trapped in NETs. NET formation of human neutrophils after co-incubation with A. fumigatus. Microscopic pictures were taken after 3 hours. Neutrophils were co-incubated with resting conidia (A), swollen conidia (B) and hyphae (C). All scale bars represent 5 µm length. Morphological structures are indicated by labelled arrows. Since the static images did not reveal the cell movements and fungal contacts of neutrophils before final NET formation, we also investigated the process by live cell fluorescence imaging. These analyses allowed to precisely reconstruct the kinetics of the reaction (Figure 3A and Video S1). Normally, neutrophils rapidly phagocytosed conidia, as described [4]. Interestingly, the large hyphal structures, that could not be internalised, were covered and ensheathed by multiple neutrophils. The rate of NET production was dependent on the chosen ratio between neutrophils and fungal elements (data not shown). At a ratio of 1∶1 only a minority of cells in a population (12.4±9.5%) were finally observed to disintegrate and undergo NETosis, which was clearly visible by rapid staining of externalised DNA by the nucleic acid dye propidium iodide in the supernatant (Figure 3A and Video S1). Thus, NETosis was not an invariant response pathway of dying neutrophils and its frequency was further influenced by the E/T ratio. Often only a sub-fraction of neutrophils was able to generate NETs, while the majority of cells remained alive. Nevertheless, even when only few cells were observed to undergo NETosis these could produce NETs of considerable size. A minority of cells died without signs of NET formation (data not shown). The latter was evident from bright red nuclear staining of condensed cells (Figure 3B, black arrows) or swollen cells with dilute cytoplasmic staining (Figure 3B, white arrows). 10.1371/journal.ppat.1000873.g003 Figure 3 Time-lapse widefield microscopy of NET formation by neutrophils co-incubated with swollen conidia of A. fumigatus. (A) Time series of NET formation by human neutrophils upon contact to swollen A. fumigatus conidia. Extracellular DNA was stained with propidium iodide (red), conidia and germ tubes with calcofluor white (blue-pink). Microscopy was carried out for 5 h after onset of co-incubation while single pictures were taken every 30 seconds (Video S1). (B) Co-incubation after 150 minutes. Black arrowheads indicate cells which had died without releasing DNA, white arrowheads point to cells undergoing preparation for NET release. The colours are the same as in (A). (C) DNase digestion of NETs after 180 minutes of co-incubation. White arrowheads indicate the preformed NET structures right before destruction by the enzyme (Video S2). The colours are the same as in (A). Where appropriate, real time is indicated in minutes. The DNase was added 7 min before onset of the visible NET digestion to the border of the microscopy chamber right before sealing. The size of scale bars is indicated directly. These movies are representative for at least 6 independent experiments that were performed. To further confirm that NETs produced against A. fumigatus consisted of DNA, we added DNase I to neutrophil-Aspergillus co-cultures containing prominent NET-structures (Figure 3C and Video S2). Within minutes after addition of DNase I NETs were completely disrupted, indicating that NETs observed in these systems were indeed composed of DNA (Figure 3C and Video S2). Phagocytosis and NET production by invading neutrophils in the lungs of Aspergillus-infected mice The data above suggested, that contact to A. fumigatus elements, especially growing hyphae, triggered NET formation by human neutrophils, as previously described for conidia alone [17]. However, like with the study by Jaillon [17] this observation was purely based on in vitro experiments. Thus, although NET-structures have been observed in tissue wounds in vivo before [14], [20] or in lungs infected with Candida albicans [21], it is not known, whether they also exist in lungs recently infected with A. fumigatus and also the kinetics of NET formation in vivo has not been characterised, yet [19]. As direct imaging of NETs in the lungs of humans is not possible [19], we newly developed a mouse model of early invasive aspergillosis (Figure 4A, and Video S3) allowing us to clarify, whether NETs really occur during defence against an acute Aspergillus infection in vivo. 10.1371/journal.ppat.1000873.g004 Figure 4 In situ 2-Photon microscopy of NET-like structures formed in a murine A. fumigatus infection model. (A) Model system used to demonstrate NET formation and -structure in living lung-slices. 7–10 hours after infection of live mice the right lung lobe was prepared, dissected and NETs were stained with a specific DNA dye. In situ 2-photon microscopy was carried out in PBS pre-warmed to 37°C (Video S3). (B) High resolution image of a fungal mass with outgrowing hyphae (blue colour, arrowheads) within the infected lung. Red staining (DNA) shows NET-structures as well as the intact nuclei of host cells within the lung. Please also note the fine blue curvature of alveoli (white arrows). The same image is 3-D rendered in Video S8. (C) In lungs of infected mice multiple of such large accumulations of fungal masses were visible (blue colour, white arrowheads). At higher magnification these fungal masses were surrounded by fine, red fibres demonstrating NET formation in these areas (D) In low and especially high magnification such structures often strongly resembled NETs observed before in vitro (red) and were mostly associated with swollen A. fumigatus conidia (blue) in lung slices freshly prepared from infected lungs (“acute lung slices”). (E) In mice treated i.t. with PBS NET formation was absent ( overview, higher magnification). Blue: SHG signal of the lung tissue and fungal masses, red: nuclei of cells cut open during processing. The images are representative of more than 20 individual mice, which were analysed. We intratracheally injected swollen conidia, that were stained with calcofluor white, into wild type C57/BL6 mice or mice with a targeted insertion of EGFP into the lysozyme locus (Lys-EGFP), thus harboring green neutrophils [22]. Pilot experiments had demonstrated that swollen conidia, which represent the Aspergillus morphotype associated with the onset of invasive growth, produced prominent NET-structures in vitro. After 7–10 h, mice were killed and their lungs were analysed for fluorescent cells, fungal elements as well as NETs by 2-photon microscopy (Video S3). These analyses demonstrated the formation of large fungal clusters with outgrowing hyphae and attached host cells associated with alveoli (Figure 4B and Video S8). Clearly also structures closely resembling the NETs we had observed before in vitro (Figure 1 and 3) were present within infected lung tissue (Figure 4B–D). The structures were especially enriched in areas with bulk associations of multiple fungal elements (Figure 4C and D) while in control animals, which only received PBS we did not observe these structures (Figure 4E). DNase digestion of these structures was possible. Neutrophils could be observed to be highly motile within these lung-slice preparations (Figure 5A and Video S4) and we measured average migration velocities of almost 10 µm/min with more than 50% of cells migrating (data not shown). Such migration parameters are very similar to values measured for neutrophils in vivo [23], [24], suggesting that our approach allowed the measurement of near natural neutrophil motility in vital lung tissue. Importantly, we could also observe neutrophils phagocytosing individual conidia in those living lung slices (Figure 5B, arrowheads and Video S5) leading to the localisation of conidia inside of neutrophils (Figure 5C and Video S9) and their transportation with the migrating cells over larger distances. Neutrophils could also be observed carrying swollen conidia with small hyphal segments over large distances in a collective effort (Figure 5C, arrowhead, Video S6), similar to what we had observed before in vitro (Figure 3 and Video S10). This was also highly reminiscent of the pattern of 2-D phagocytosis which we previously described in an in vitro system [4]. Sometimes individual motile neutrophils were observed migrating along the curvature of alveoli, potentially scanning the environment (Figure 5E, arrowhead, Video S7) for infection. 10.1371/journal.ppat.1000873.g005 Figure 5 Neutrophil motility and interaction with fungal elements in living lung slices. Lys-EGFP mice were infected and acute lung slices were prepared as described in Figure 4. Subsequently, time-lapse 2-photon microscopy was used to generate movies of cells migrating in these lung slices. (A) A still image of a movie showing individual neutrophils (green), DNA (red) and tissue/fungal elements (blue). Tracks of migrating cells are shown in white. Image of the tracks alone (Video S4). (B) Many neutrophils (green) can be seen migrating within the tissue and internalising conidia in slices. The red square is shown as a magnification on the right (white arrowheads denote phagocytosis events). Tissue (dark blue) fungal elements (light blue), DNA (red, Video S5). (C) A still image from the middle of a Z-stack of an infected lung in a Lys-EGFP animal. The area boxed in white is shown enlarged from the bottom and as 3-D rendering from the side to demonstrate the internalisation of a conidium (light blue) within a neutrophil (green). See also Video S9. (D) Multiple neutrophils (green) cooperate to transport a hypha (White arrowhead, hypha is light blue. The area of the red square is shown as a magnification below.), that is too big to be engulfed, to an area with more neutrophils (Video S6). Red: DNA from nuclei and NETs. Similar events can also be observed in vitro (Video S10). (E) An individual neutrophil (green, arrowhead) enters the alveolar space and migrates along the alveolar surface (Dark blue structure. The white track is the migration path of the neutrophil.). The border of the alveolus is depicted with a broken blue line in the magnification of the area identified by the red square (Video S7). The images are representative of 8 individual mice that were analysed. These data strongly suggested the rapid production of NETs against an infection with A. fumigatus in vivo. However an important question was, whether neutrophils were required for NET formation. It could be clearly shown that neutrophils massively invaded the lung shortly after infection with A. fumigatus (Figure 6A). To address their importance for NET formation, we depleted neutrophils in mice by injection of anti Gr-1 monoclonal antibodies as reported [25]. 24 h later, animals were infected with A. fumigatus and investigated as described above. The depletion of neutrophils strongly inhibited their immigration into the lungs of infected mice. When the Gr-1 depletion was done in Lys-EGFP mice there were hardly any NET-structures detectable by staining with the DNA-specific dye Sytox Orange and no green neutrophils were patrolling the tissue (Figure 6B) despite the presence of prominent fungal clusters in the lung. A quantification of NETs in neutrophil-depleted compared to untreated mice further underscored this finding (Figure 6C). Since, however, the natural infectious particles are not swollen but rather resting conidia, we also quantified the NET formation in response to an infection with this airborne form of the fungus in untreated mice. Here, NET formation was less prominent than with swollen conidia, but still clearly detectable (Figure 6C). The almost complete lack of NET structures in neutrophil-depleted mice despite the presence of large fungal masses was prominent, thus showing for the first time a direct connection between the availability of infiltrating neutrophils in the lung and the local development of NET structures. 10.1371/journal.ppat.1000873.g006 Figure 6 NET formation in vivo is dependent on the presence of newly immigrating neutrophils. (A) Mice were intratracheally injected with either swollen A. fumigatus conidia or PBS. 7 h after infection, the number of neutrophils in the bronchoalveolar lavage of these mice was measured by FACS. (B) Lys-EGFP mice were treated with the neutrophil depleting anti Gr-1 antibody RB6-8C5 24 h before infection with A. fumigatus. A lung slice of such a mouse analysed 10 h after infection shows almost no green cells (arrowhead in the magnification of the area boxed in green shows one of the very rare cells in this slice) and no NET-like structures (note only punctate red staining for DNA of nuclei) in areas of fungal masses (blue). (The area of the red square is magnified on the right) The image is representative for 3 animals that were analysed. (C) Quantification of NET formation in Gr-1- and mock-depleted mice infected with swollen conidia as well as untreated mice infected with resting conidia. Shown is a representative result of 3 independent experiments performed. For each condition 20 fungal clouds >20 µm were scored for the presence of NET structures. The 3 images are reference pictures for the type of structure scored with −/+/++. The frequency of NET formation is morphotype- and strain dependent To further characterise NET formation quantitatively, we analysed the DNA content of the supernatant of co-cultures of A. fumigatus with freshly isolated, unstimulated neutrophils using propidium iodide. Further confirming our imaging data (Figures 1 and 2), NET production in the supernatants was highest when hyphae were co-incubated with neutrophils and considerably lower with swollen and in particular resting conidia (Figure 7A). The addition of both DNase I or the NADP(H) oxidase inhibitor DPI (diphenyliodonium) led to a reduced amount of fluorescence indicating reduction in the generation of NETs (Figure 7A). Even more, the addition of DPI abolished NET formation completely which supports the finding that NET formation depends on the production of ROI [15]. The relative decrease of the number of neutrophils during the co-incubation experiments (E/T ratios of 1∶10 instead of 1∶5) with resting or swollen conidia and hyphae resulted in less NET formation, whereas ratios of 1∶1 resulted in higher fluorescence signals and thus increased NET formation (data not shown). Furthermore, NET formation also depended on the surface structure of the pathogen because latex beads did not trigger significant NET formation (Figure 7A and Figure S1E) and the measured low background fluorescence was obviously caused by neutrophils which had undergone lysis after 3 h of incubation. 10.1371/journal.ppat.1000873.g007 Figure 7 Detection of extracellular DNA by propidium iodide-staining after co-incubation of neutrophils with Aspergillus morphotypes. The different morphotypes of A. fumigatus were co-incubated for 180 min with neutrophils and the release of extracellular DNA was determined by measuring the fluorescence intensity of propidium iodide. Hyphae (black bars), swollen conidia (grey bars) and resting conidia (white bars) of A. fumigatus were used. (A) A. fumigatus ATTC 46445 wild type strain after co-incubation with human neutrophils. DNase I or DPI were added from the beginning of the co-incubation. Asterisks indicate significant differences (*p<0.05 or **p<0.01) based on Student's t-test. (*1) Indicates comparison of each morphotype of the wild type (ATCC 46645) strain with the DNase I treated wild type strain; and (*2) with the DPI treated wild type strain. (B) Analysis of different A. fumigatus wild type and mutant strains. In some experiments, 0.07 µg RodA protein was added to the A. fumigatus mutant strain ΔrodA just 15 min prior to the co-incubation with neutrophils. Asterisks indicate significant difference (*p<0.05 or **p<0.01) in the formation of extracellular DNA by neutrophils during (*1) co-incubation of HF treated resting conidia of the DAL wild type strain in comparison to untreated resting conidia as a control, during (*2) co-incubation with the DAL wild type strain in comparison to the mutant strain ΔrodA, and (*3) during co-incubation with the mutant strain ΔrodA in comparison to ΔrodA supplemented with the spore surface protein RodA. Only the single morphotypes were compared with each other. To further study the ability of different fungal strains to trigger NET formation, we employed different mutant and wild type strains of A. fumigatus in NET-forming assays in vitro. As shown in Figure 7B, NET formation also depended, at least in part, on the strain analysed. NET induction triggered by the DAL wild type strain was lower than that observed with the ATCC46645 wild type strain. Interestingly, a polyketide synthase (pksP) mutant strain did not trigger significantly different fluorescence and thus NET production by neutrophils compared with the respective wild type strain ATCC46645. This indicated that dihydroxynaphthalene melanin, which is lacking in the pksP mutant, does not influence NET formation, although this cell wall component is able to suppress ROI-production in neutrophils [26], [27]. Hydrophobin RodA influences NET formation Nevertheless, cell wall components are the first structures of the fungal pathogen encountered by invading phagocytes and thus they should play a role in shaping the immune response against A. fumigatus. Since it has recently been shown that hydrophobin RodA, the major surface component of A. fumigatus conidia, renders them immunologically inert, thus not triggering adaptive immune responses [28], we raised the question whether RodA was able to suppress NET formation as key antifungal immune response of the innate arm of cellular immunity. Hydrophobin RodA is present on resting conidia, in reduced amounts on swollen conidia and lacking on hyphae [29]. Therefore, we analysed the ΔrodA mutant lacking the hydrophobin RodA surface layer of swollen and resting conidia [30]. Confirming an important role of hydrophobin RodA for this process, NET formation was significantly increased when neutrophils encountered swollen and resting rodA mutant conidia as compared to wild type conidia (Figure 7B). NET formation induced by resting conidia of the ΔrodA mutant was even stronger than the increased NET formation induced by any of the hyphal forms investigated in parallel which suggested, that hydrophobin RodA was a major factor for silencing the NET-function of neutrophils. This also indicated, that resting conidia do express a NET-inducing element that is shielded by hydrophobin RodA, as described before for the induction of adaptive immune responses [28]. NET formation was almost identical when hyphae of wild type and rodA mutant hyphae were compared suggesting, that a potentially strong NET-inducer that is present on resting conidia and normally shielded by RodA is lost during hyphal development. Consistently, addition of purified hydrophobin RodA to rodA mutant conidia reduced the NET formation (Figure 7B). Furthermore the chemical removal of the rodlet layer of DAL wild type resting conidia by hydrofluoric acid (HF) treatment, which also kills conidia, lead to a significant increase of NET formation (Figure 7B), whereas the level of NET formation stayed the same after HF treatment of resting conidia of the ΔrodA mutant. Obviously also dead conidia trigger NET formation and thus it appears unlikely that an actively secreted product rather than a fixed surface structure mainly activates NET formation. In addition, when RodA was already genetically removed in the ΔrodA mutant, HF-treatment did not further enhance NET formation by resting conidia. Taken together, these data indicate that RodA helps Aspergillus to evade NET induction thus constituting the first molecularly defined pathway in A. fumigatus for escape from this central response of neutrophils to fungal infection. Killing of A. fumigatus by neutrophils Despite the clear induction of NET formation we did not observe an influence of NET formation on killing of A. fumigatus resting and swollen conidia in vitro. A. fumigatus conidia were co-incubated with freshly isolated, unstimulated human neutrophils and CFUs of the fungus were determined at different time points. As shown in Figure 8A, after 180 min about 35% of both swollen and resting conidia were killed. This killing rate was in the range found in previous studies, in which killing rates of around 50% of all conidia were observed after 160 min [9]. Addition of DNase I and DPI did not affect the killing of conidia (Figure 8B). Therefore, it seems unlikely that NET formation contributes to killing of conidia in this system. To elucidate whether killing can mainly be explained by phagocytosis, we added cytochalasin D, which disrupts actin filaments and thus inhibits phagocytosis, to conidia-neutrophil co-incubation experiments. Cytochalasin D effectively inhibited the killing of A. fumigatus conidia by naïve neutrophils (Figure 8B). So we suggest that the killing of conidia is mainly caused by phagocytosis and thus not by NET formation. 10.1371/journal.ppat.1000873.g008 Figure 8 Survival of resting and swollen conidia of A. fumigatus strains after co-incubation with neutrophils. The number of CFU determined for conidia without co-incubation (T0) was set as 100% survival. CFUs of A. fumigatus conidia were determined as described in materials and methods. Survival of swollen (grey bars) and resting conidia (white bars) are depicted. (A) Survival of A. fumigatus strain ATCC46645 during co-incubation with neutrophils over time (T0, T60, T120 and T180). Asterisks indicate significant difference (*p<0.05 or **p<0.01) in survival in comparison to the time point T0 for each morphotype. (B) Survival of A. fumigatus strain ATCC46645 after co-incubation with neutrophils and in the presence of DNase I or DPI. Asterisks indicate significant difference (*p<0.05 or **p<0.01) in survival in comparison to the time point T180 after neutrophil co-incubation. The survival rate did not increase significantly by the addition of DNase I or the NAD(P)H-oxidase inhibitor DPI. Only the addition of cytochalasin D increased the survival of A. fumigatus conidia. (C) Analysis of the survival of the A. fumigatus strain pksP and its parental wild type strain ATCC46645 showed no significant differences in killing. Also the deletion mutant ΔrodA and its parental wild type strain DAL revealed no difference in killing. The addition of the conidial hydrophobin RodA (0.07 µg [w/well]) did not influence the survival of the Aspergillus fumigatus mutant strain ΔrodA and the wild type strain DAL during co-incubation with neutrophils. Consistently, the ΔrodA conidia were killed at almost the same rate as the parental wild type conidia (DAL strain), although the induction of NET formation differed significantly between the two strains. The addition of 0.07 µg hydrophobin RodA did not influence the killing of ΔrodA in comparison to untreated ΔrodA conidia (Figure 8C) significantly. Taken together, these data indicate that NET formation does not directly affect killing of conidia in this system in vitro. To unravel the role of NETs in killing A. fumigatus hyphae we measured the respiration rate of hyphae after different time periods of co-incubation with neutrophils. Since conventional CFU determination is almost impossible for the hyphal growth form of filamentous fungi, the analysis of the oxygen consumption rate served as an indirect parameter for cell viability. The first significant differences in oxygen consumption of hyphae after co-incubation with neutrophils were detected after 9 h and increased further at later time points (up to 12 h) (Figure 9) in comparison to untreated controls. The addition of DNaseI or DPI almost completely abolished the detrimental effect of the neutrophils. These findings suggest that NETs do reveal antifungal activity against fungal hyphae, which, however, occurs with a certain time lag at later stages. 10.1371/journal.ppat.1000873.g009 Figure 9 Determination of the atmospheric molecular oxygen consumption of A. fumigatus hyphae after co-incubation with neutrophils for 3 to 12 h. Hyphae (black bars) were co-incubated with neutrophils for different periods of time. Untreated, hyphae not co-incubated with neutrophils served as controls (stipled bars). The change of the oxygen saturation in the medium (in %) over time (h) was plotted. Asterisks indicate significant difference (*p<0.05 or **p<0.01) in the change of oxygen saturation in comparison to the control. In some experiments DNase I or DPI was added to the co-incubation and the control. Discussion Here, we demonstrate that both human and murine neutrophils produce neutrophil extracellular traps (NETs) in response to the human-pathogenic fungus A. fumigatus. Typical NET-structures which have already been described for other pathogens were observed by fluorescence and electron microscopy during co-incubation of neutrophils with A. fumigatus mycelium and conidia. Both fungal morphotypes were embedded in NETs consisting of smooth fibres and globular domains as first described by Brinkmann et al. [14] and others (reviewed in [16]). The DNA intercalating dye propidium iodide stained NETs strongly. EM revealed that neutrophils engulf A. fumigatus hyphae, a phenomenon which has also been described for C. albicans hyphae [21], [31]. NET formation started after 2 hours of co-incubation and increased rapidly within the next hour. A similar time span of 180–240 minutes for the release of NETs after stimulation of naïve neutrophils with Staphylococcus aureus was reported by Fuchs et al. [15]. Remarkably, NETs were induced relatively quickly by A. fumigatus conidia and mycelium in naïve neutrophils without prior stimulation, but also other eukaryotic pathogens are able to trigger NET formation in vitro, such as the protozoan Leishmania [32]. Besides experimental in vitro data, we provide the first direct observation of NETs or at least NET-like structures in lung tissue infected with A. fumigatus and show that these structures form within 3–4 hours after exposure to the first immigrating neutrophils. The recent paper by Urban et al. identified NETs in lungs fixed 24 h after infection with C. albicans, thus not allowing to investigate the early kinetics of this response and also precluding analysis of cell migration in the infected site. Also the role of immigrating neutrophils was not addressed in this study [21]. Our study is thus an important step forward in being the first to demonstrate the existence of NETs in Aspergillus-infected lungs and highlighting the importance of newly arriving neutrophils for their generation. This information is critical for a complete understanding of neutrophil defence during fungal attack. A recent study impressively demonstrated that the lack of functional NAD(P)H oxidase in neutrophils of a patient suffering from chronic granulomatous disease inhibited the production of NETs in response to Aspergillus nidulans in vitro. Re-introduction of a functional enzyme by gene therapy rescued the NET-phenotype in vitro and enabled the patient to eradicate a therapy-resistant invasive aspergillosis [19]. However, due to technical limitations the study did not directly demonstrate the existence of NETs in the infected patient lung nor could it demonstrate that the infiltration of functional neutrophils was essential for their formation. Our study closes this gap in our knowledge and provides the first direct hint to neutrophil-derived NET formation in response to A. fumigatus infection in vivo. Our data also show the explosive release of the NET DNA, which occurs within a few seconds, while the preceding process, that prepares a neutrophil for the final NET-release, lasts up to 3 hours. The release kinetic and the fact that the structures we observe in vitro are highly sensitive to DNase I-mediated destruction well agree with recently published data [15] and further confirm that we were visualising true NETosis. It is interesting to note that only a subpopulation of neutrophils actually ended up producing NETs, although this was also dependent on the chosen E/T ratio. Often, a majority of cells either stayed alive or underwent normal necrotic or apoptotic cell death as detected by entry and permanent residence of nuclear dyes in cells but not the explosive release of DNA. This was despite the fact that most if not all neutrophils briefly touched or stayed in close contact with fungal elements in these assays. Also our analyses of neutrophils migrating in live lung-tissue underscored, that only a minority of neutrophils secrete NETs. Although we frequently observed NET structures closely associated with fungal masses in lung-slices, we also observed large numbers of highly motile neutrophils in between. What ultimately decides, whether a neutrophil performs NETosis or other types of responses after contacting fungal elements, remains unclear. It is, however, conceivable, that control mechanisms exist that limit the production of NETs because external DNA, especially in the form of nucleosomes as present in the NET structures [14], [21], is potentially harmful. Nucleosomes can be taken up by DNA-specific B cells that can then make anti-nuclear-antibodies (ANAs) because they get help from T cells specific for the histone component of nucleosomes [33]. ANAs are found in many autoimmune diseases such as systemic lupus erythematosus [33], [34] and often mediate the pathologies associated with the disease. A NET-inhibiting mechanism driven by the amount of external DNA is an attractive concept. This would, however, imply that neutrophils possess a mechanism that allows them to measure the amount of external DNA, inhibiting their further production of NETs if this amount is too high. Indeed, Toll Like Receptor 9 is a well known receptor for dsDNA [35] and very recently, new receptors for intracellular DNA have been identified [36]–[38] that might serve such a function. It would thus be interesting to study animals mutant for such proteins for their ability to generate NETs. The novel mouse model for investigating NETs and invading neutrophils in live lung tissue introduced here proved to be a very helpful approach. We can demonstrate structures in living lung tissue that closely resemble the NETs observed before in vitro by confocal microscopy and scanning electron microscopy. As we show, the migration parameters of cells in our experiments are in accordance with previously published data on neutrophils observed in true intravital setups in various organs [23], [24], [39] and also our own experience for neutrophil migration in vivo. This supports, that the tissue slice approach maintains near-natural cellular behaviour. As it is currently not foreseeable, how true intravital 2-photon microscopy deeply within the breathing lung can be technically achieved, this new approach opens a promising new avenue for the investigation of lung-associated immune responses. Moreover, we have identified here a novel molecular mechanism by which A. fumigatus conidia escape neutrophil attacks via NETs. Fungal hydrophobin RodA, which very recently was identified as being important to protect conidia from recognition by the adaptive immune response [28], now also shows its potency in protecting conidia from triggering NET formation. However, the molecular mechanisms how hydrophobin RodA achieves this reduction of NET formation still remain enigmatic. Presumably, the rodlet layer hides the immunologically active protein or carbohydrate components of the cell wall. This would also explain the significantly higher induction of NETs by hyphae in comparison to resting and swollen conidia, which apparently expose fewer immunogenic molecules. By contrast, the fungal pigment DHN-melanin appears not to be involved in evading neutrophil killing. Although the pksP mutant possesses a smooth, modified conidial surface layer and is not able to synthesise DHN-melanin [40], it did not induce more NET formation and it was not killed at a higher rate. The surface cell wall components responsible for the induction of NETs are presently under investigation. Also the question which phagocyte receptor is involved in the triggering of NET formation remains to be answered. In addition, we showed that ROI are important for triggering the release of NETs by A. fumigatus, because the specific NADP(P)H oxidase inhibitor DPI drastically reduced NET formation, as previously shown for Staphylococcus aureus [15]. Furthermore, DNase I disintegrated NETs as known from other studies [14]. Surprisingly, a reduced amount of NETs was not accompanied by a reduced killing rate of conidia in vitro. These data propose that A. fumigatus conidia are killed in a NET-independent fashion. This is further supported by the fact that the phagocytosis inhibitor cytochalasin D abolished conidial killing, suggesting that phagocytosis might probably by the most important antifungal mechanism for the clearance of A. fumigatus conidia. However, NETs revealed slightly detrimental effects on hyphal viability demonstrated by reduced respiration rates. Killing might also be mediated by antimicrobial peptides [41] but probably also by a so far unknown mechanisms. Taken together, NETs may be involved in disarming A. fumigatus, e.g. by binding secreted proteins and surface structures, and may prevent further spreading, but apparently do not represent the major factor for killing. These results are in marked contrast to the clear cytotoxic effect of NETs described for C. albicans [21]. Thus, released granular antimicrobials may not have a fungicidal, but a fungistatic effect against A. fumigatus. Candidates could be the fungal growth suppressing granule protein lactoferrin, which is able to sequester iron [8], [21] or the calcium binding heterodimer calprotectin, which was recently shown to be associated with NETs [21]. Clarification of these mechanisms in the future might be instrumental in elucidating the entire molecular signalling complex that leads to NET formation and fungal damage. Materials and Methods Ethics statement All animal experiments were in compliance with the German animal protection law in a protocol approved by the Landesverwaltungsamt Sachsen-Anhalt (file number: 203.h-42502-2-881 University of Magdeburg). The ethics committee of the University Hospital Jena did not raise any concerns and approved our study (file reference 2395-10/08). All healthy voluntary donors gave written, informed consent. Strains and media Aspergillus fumigatus wild type strains ATCC 46645 (ATCC), DAL [42] as well as the mutant strains pksP [26], and ΔrodA [30] were employed. The strains were cultivated in RPMI 1640 w/o glutamine (Lonza, Wuppertal, Germany) medium with 5% (v/v) heat inactivated FCS (PAA, Cölbe, Germany). Cultivation conditions For microscopical analysis by both fluorescence microscopy and scanning electron microscopy (SEM) analysis A. fumigatus was cultivated over night in RPMI with 5% (v/v) heat inactivated FCS at 37°C on cover slips in a wet chamber. For determining colony forming units (CFUs) and the quantification of extracellular DNA, hyphae (16 h), swollen conidia (2 h) and resting conidia were incubated in 96 well plates (Brand) in 100 µl RPMI with 5% (v/v) heat inactivated FCS at 37°C. Isolation of neutrophils Human neutrophils were isolated from peripheral blood of healthy donors according to the protocol of Wozniok et al. [43]. After a gradient centrifugation of the blood in “PolymorphprepR” (Axis Shield, UK) at 550×g, neutrophils were collected and purified by erythrocyte lysis with ACK buffer. Then, the granulocytes were washed with HBSS buffer and diluted in RPMI media with 5% (v/v) heat inactivated FCS. Scanning electron microscopy Starting with 1×106 conidia, A. fumigatus was grown on cover slips in 100 µl RPMI media with 5% (v/v) heat inactivated FCS for 16 h. To generate swollen conidia, resting conidia were preincubated in RPMI media for 2 h before. Resting conidia and swollen conidia were co-incubated with 2×105 neutrophils. The cell culture/conidia mixture was incubated at 37°C. After 180 min co-incubation, a sample was drawn and washed with 0.1 M cacodylate buffer pH 7.2 (Serva, Germany) and then fixed with 2.5% (v/v) glutaraldehyde cacodylate buffer three times for 45 min. The samples were again washed with cacodylate buffer, dehydrated in a graduated ethanol series, critical-point dried (BAL-TEC CPD030, Balzer, Liechtenstein), coated (BAL-TEC SCD 005) and analysed with a Carl Zeiss SMT (Oberkochen, Germany) scanning electron microscope. Due to the fragility of the NET-structures, disturbance of the media in each step were kept to a minimum to preserve the cellular structures. Immunofluorescence and confocal laser scanning microscopy (CLSM) 100 µl RPMI media with 5% (v/v) heat inactivated FCS on cover slips were inoculated with 1×106 A. fumigatus conidia. Then, 2×105 neutrophils were added and the cover slips were incubated at 37°C. After different time points (0, 60, 120 and 180 min) the media were extracted and 10 µl of a solution containing 1 µg/ml propidium iodide / 100 µg/ml calcofluor white (Sigma, Deisenhofen, Germany) were added to the cover slips and inverted on a microscopic slide. Fluorescence microscopic analysis was performed with an Axiovert 200 M/LSM 5 live confocal laser scanning microscope (Carl Zeiss, Jena, Germany). Fluorescence signals were detected using a 415–480 nm band pass filter for calcofluor white and a 560–675 nm band pass filter for propidium iodide. Images were obtained using the ZEN 2008 software (Zeiss). Live imaging of NETosis and NET-destruction After 3–4 h of pre-incubation in RPMI 1640 (Biochrom, Germany) supplemented with 5% (v/v) FCS at 37°C a total of 1×106 swollen A. fumigatus conidia were stained with calcofluor white (Sigma) for 15 min at a final concentration of 50 µg/ml. These conidia were then co-incubated with 2×105 freshly isolated human neutrophils in a laboratory-made microscopy chamber containing 200 µl RPMI 1640 supplemented with 5% (v/v) FCS and 10 µl of a 10 µg/ml propidium iodide solution as described before [4]. Fluorescence and cell behaviour were monitored simultaneously at 37°C at two frames per minute using an Olympus BX61 microscope with a 60×LUMPLFL W/IR(NA 0.9) lens, together with the cellˆR software (version 2.1) from Olympus Biosystems (Munich, Germany). For the DNAse assay, the co-incubation of neutrophils and Aspergillus was carried out in a 96 well cell culture plate for three hours followed by calcofluor white and propidium iodide staining. After this time the co-incubation was pipetted into a laboratory made microscopy chamber and immediately before start of the time lapse microscopy 10 µl of a DNase I solution ([1 U/µl] Qiagen, Germany) were added to the medium at the border of the chamber. Kill assay based on colony forming units The co-incubation of 1×106 swollen and resting conidia with 2×105 freshly isolated human neutrophils was carried out in 100 µl RPMI in 96 well microtiter plates (Brand, Germany). When indicated, NAD(P)H oxidase inhibitor DPI (16 µM) or DNase I (100 U/ml) were added. For inhibiting phagocytosis the neutrophils were preincubated with 10 µg/ml cytochalasin D (Sigma Aldrich, Taufkirchen) for 20 min and then added to A. fumigatus conidia. After 180 min, 2 µl 50 U/ml DNase I were added to destroy the NET fibres. After 10 min of incubation the sample volume was adjusted to 1 ml with ice-cold water containing 0.002% (v/v) Tween 80. The samples were vortexed and diluted 1∶100 with PBS /Tween 80 (0.002% (v/v)) solution. 10 µl of the sample was plated on Sabouraud agar plates. After 24 h of incubation at 37°C, colonies were counted. Viability assay based on the determination of the oxygen consumption rate Determination of the respiration rates of A. fumigatus hyphae were routinely performed with an oxygen monitor (YSI 5300, YSI Life Sciences, USA) equipped with polarographic Clark-type electrodes. The depletion of dissolved oxygen in RPMI medium with 5% heat inactivated FCS was measured for 10 minutes at 37°C under continuous stirring. Samples were prepared as follows: 1×107 A. fumigatus conidia were grown for 16 h in 3 ml RPMI with 5% heat inactivated FCS (v/v) at 37°C and 200 rpm. After centrifugation, the supernatant was discarded and 1 ml fresh RPMI with 5% heat inactivated FCS was added. The co-incubation experiment was started with 2×107 fresh isolated, unstimulated neutrophils. After two different time points (from 3 to 12 h) 10 ml ice-cold water and 10 ml PBS were added, mixed for 60 s using a Vortex mixer and centrifuged for 15 min at 4000 rpm at 21°C (Centrifuge 5810R, Eppendorf, Hamburg). The pelleted mycelium was resuspended in 3 ml fresh RPMI with 5% (v/v) heat inactivated FCS and applied to the sample chamber. Pure RPMI medium was set as 100% oxygen saturation. Quantification of extracellular DNA The co-incubation experiments of A. fumigatus conidia or mycelium with neutrophils in black 96 well plates for 3 h was carried out as described above. In some experiments, 16 µM DPI, 100 U/ml DNase I, and 0.07 µg purified RodA was added to the wells. The ratio of A. fumigatus hyphae or conidia to neutrophils was 5∶1. Two µg of propidium iodide were added and fluorescence was measured (excitation filter 544 nm, emission filter 612 nm, 1300 gain) in a microtiter plate reader (Fluostar optima, BMG Labtech, Germany). 2-Photon microscopy in infected lungs Swelling leading to the onset of germination in conidia was carried out by a 7 h pre-incubation step in RPMI 1640 (Biochrom) supplemented with 5% FCS (v/v) at 37°C. A total of 5×106 swollen A. fumigatus conidia were stained with calcofluor white (Sigma) for 15 min at a final concentration of 50 µg/ml. For infection these conidia were applied intratracheally into female C57/Bl.6 mice (8–10 weeks old, Harlan, Germany) resuspended in total volume of 100 µl PBS after filtration through a 70 µm cell strainer. 7–10 h later the infected animals were sacrificed by an overdose of isofluran and the lungs were filled in situ with prewarmed low-melting agarose (2% w/v, Promega, Germany). After solidification for 30 minutes at 4°C the right lung lobe was prepared and cut horizontally along the midline with a vibratome (752M Vibroslice, Campden Instruments, UK). The upper half of the lung was then transferred into a Petri dish filled with PBS heated to 37°C and supplemented with Sytox Orange (Invitrogen, Germany) at a final concentration of 5 µM. 2-photon microscopy was performed using a Zeiss LSM 710 NLO microscope on an upright Axio Examiner stage equipped with a 20×NA1.0 water dipping lens (Zeiss). For imaging, different areas along the dissection were scanned down to 400 µm depth using an illumination wavelength of 800 nm detecting green (530 nm) and red (580 nm) fluorescence, as well as the Second harmonic generation (SHG)-signal and the blue calcofluor fluorescence (at 400–470 nm emission) with the external non descanned detectors (NDD). SHG detects fibrillar structures such as proteins of the extracellular matrix by their emission of light at half of the wavelength used for illumination. The frame rate for movies was up to 12 fs/minute at a fixed focal depth. See also Video S3 for an explanation of the method. The movie was made based on the 3-D structure of a real mouse lung using the GNU-licensed software Blender (www.blender.org). Quantification of NET formation in infected lungs To estimate the importance of neutrophils in in vivo NET formation animals were treated i.p. with 100 µg anti-Gr-1 antibody (clone RB6-8C5) 24 hours prior to i.t. infection with 108 calcofluor white stained WT conidia. 7 hours later the infected lungs were prepared, stained with Sytox Orange (5 µM in PBS) and observed for fungal masses with a diameter ≥20 µm by 2-photon microscopy. These structures were microscopically scored for NET formation in 3 categories: (−) no NETs detectable, (+) single NET fibres attached to the fungal cloud and (++) distinct NETs surrounding the fungal material. 20 fungal clouds were checked for NET appearance per investigated lung. Statistics The Student's t-test was used for significance testing of two groups. For the measurement of NET formation (Figure 7A) we compared the fluorescence values for hyphae of ATCC46645 with hyphae treated with DNase I as well as with DPI. In addition, the values of swollen and resting conidia were tested for significant difference. All significant differences are labeled with an asterisk (*p<0.05; **p<0.01). For the investigation of the strain-dependent difference in NET formation (Figure 7B) resting conidia of the DAL strain were compared with resting conidia after HF treatment. In all killing experiments (Figure 8) a Student's t-test was applied. For all in vitro experiments blood samples of four different donors were used: two female and two male donors. For the determination of CFU five technical replicates were applied, for quantification of NET formation eight technical repetitions were used. For the quantification of respiration rates, all experiments were repeated three times. Supporting Information Figure S1 NET formation by human neutrophils co-incubated with resting conidia, swollen conidia and hyphae of A. fumigatus at indicated time points and controls. CLSM overlay pictures showing NET formation of human neutrophils at indicated time points. Extracellular DNA was stained with propidium iodide (red), conidia and hyphae with calcofluor white (blue). Microscopic pictures were taken after 0, 60 and 120 min. Neutrophils were co-incubated with resting conidia (A), swollen conidia (B) and hyphae (C). For control only neutrophils in RPMI media were tested after 180 min (D). Also control co-incubation with latex beads showed no NET formation (E). (2.61 MB TIF) Click here for additional data file. Video S1 Kinetic of NET formation by human neutrophils in vitro. Freshly isolated human neutrophils were co-incubated with conidia of Aspergillus fumigatus, that had before been swollen in RPMI for 150 min. Extracellular DNA was stained with propidium iodide (red), conidia and germ tubes with calcofluor white (blue-pink). Microscopy was carried out for 5 h after onset of co-incubation while single pictures were taken every 30 seconds. Indicated is a scale bar and real time in minutes. Please note the explosive release of a NET (intensive red colour around a central neutrophil) between 189–191 minutes into the experiment. (3.59 MB MOV) Click here for additional data file. Video S2 Kinetic of NET degradation by DNase I in vitro. After 180 minutes of neutrophil-Aspergillus co-incubation a well established NET is visible. At the beginning of the movie (0 min) DNase I was added to the medium. At 7 minutes digestion of the NET started and was finished (no NET structure detectable) by 9.5 minutes into the experiment. Indicated is a scale bar and real time in minutes. (0.84 MB MOV) Click here for additional data file. Video S3 Investigating NET formation in the murine lung. A movie showing the sequence of events leading to the formation of NETs in murine lungs and their analysis by time-lapse 2-photon microscopy in situ. (4.97 MB MOV) Click here for additional data file. Video S4 Neutrophils migrate through an Aspergillus-infected lung slice. A Lys-EGFP mouse was infected with swollen A. fumigatus conidia and 7 h later the lung was prepared as described in movie 3. The sequence shows several neutrophils (green) migrating within lung tissue (blue). Red staining is from the DNA-specific dye Sytox Orange showing cell nuclei cut open by the preparation. Please note the active motility of cells within the tissue. Indicated is a scale bar and real time in minutes. (3.99 MB MOV) Click here for additional data file. Video S5 Neutrophils phagocytose conidia of Aspergillus fumigatus in an infected lung slice. A Lys-EGFP mouse was treated as described for movie 4. The sequence shows highly active neutrophils (green) migrating through the lung tissue (blue) either carrying engulfed conidia (light blue) or being caught in the act of phagocytosis. Nuclei and NETs in the area are stained red (Sytox Orange). The average velocity of neutrophils in this experiment was 9.8 µm/min and 54% of cells were migrating at any time point (activity). Indicated is a scale bar and real time in minutes. (3.62 MB MOV) Click here for additional data file. Video S6 Neutrophils transport hyphae of Aspergillus fumigatus within an infected lung slice. A Lys-EGFP mouse was treated as described for movie 4. The sequence shows several neutrophils (green) cooperating in the transport of a hypha (light blue) from the centre part (starting at minute 9 of the movie) to the left, where a larger accumulation of other neutrophils is located. Please also note the general accumulation of large numbers of neutrophils in a swarm-like manner into the entire area, which is a typical feature of these cells in vivo. The dark blue colour indicates lung tissue and red indicates DNA (Sytox Orange). Indicated is a scale bar and real time in minutes. (3.35 MB MOV) Click here for additional data file. Video S7 Neutrophils cross epithelial borders and migrate on the alveolar surface an infected lung slice. A Lys-EGFP mouse was treated as described for movie 4. The sequence shows several neutrophils (green) migrating within the lung slice. At 12 minutes into the movie a single cell is seen (at 5 o' clock) crossing the epithelial border of an alveolus (blue) and migrating on its surface. Red shows DNA of nuclei (Sytox Orange). Indicated is a scale bar and real time in minutes. (1.41 MB MOV) Click here for additional data file. Video S8 Neutrophils internalise conidia in living lung slices. A Lys-EGFP mouse was treated as described for movie 4. The movie shows a single neutrophil (green) with a conidium (light blue) inside of the cell. To demonstrate that the conidium is really inside, the entire cell has been reconstructed from a Z-stack and is rotated. (7.96 MB MOV) Click here for additional data file. Video S9 Swollen hyphae germinate in the lung and induce NET formation. A wild type mouse was treated as described for Video S4. The movie shows a series of Z-slices through a large fungal mass with clearly detectable outgrowing hyphae as well as NET-structures at the periphery of the mass and the borders of alveoli. Afterwards, the whole Z-stack is 3-D rendered and rotated to demonstrate the 3-D appearance of the fungal ball relative to the lung structures. Dimensions of the stack are given at the bottom. (4.38 MB MOV) Click here for additional data file. Video S10 Neutrophils cooperate to transport hyphal fragments into larger accumulations. Isolated neutrophils were incubated together with hyphae in the presence of the blue DNA dye Hoechst in a laboratory made incubation chamber and analysed by live cell microscopy. The movie shows how a number of free neutrophils associate with a small hyphal fragment and transport it to an area, where a larger hypha is already associated with many other neutrophils. Similar phenomena can be observed in acute lung slices. Real time is given at the bottom of the movie. (6.55 MB MOV) Click here for additional data file.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Beta-Glucan Receptor Dectin-1 Recognizes Specific Morphologies of Aspergillus fumigatus

              Introduction Individuals with compromised immune systems are at high risk for acquired invasive fungal infections. Aspergillus fumigatus, the etiological agent of invasive pulmonary aspergillosis (IPA), is a ubiquitous mold that causes severe, invasive, life-threatening disease in patients who are severely immunocompromised. Disease acquisition includes such risk factors as neutropenia and impaired neutrophil function and myeloablative-immunosuppressive therapies associated with hematopoietic stem-cell transplantation [1]. Despite available anti-fungal therapy, the prognosis of IPA remains poor, and mortality ranges from 30% to 90% [2,3]. This is thought to be due in part to the relatively small arsenal of effective anti-fungal drugs, some of which cause severe nephrotoxicity—specifically, amphotericin B, which is associated with response rates of between 10% and 40% [4]. IPA has risen dramatically over the past several decades due to the consistent increase in immunosuppressed patients, and by the early 1990s 60% of invasive fungal infections diagnosed at autopsy were IPA [5]. It must also be stated that IPA is not only associated with stem-cell transplantation, but also presents in whole-organ transplantation, primarily lung and heart, with mortality rates of 68% to 78% [6]. A. fumigatus is also the etiological agent of allergic bronchopulmonary aspergillosis, an allergic airway disease characterized by persistent bronchial inflammation and bronchiectasis [7]. Upon inhalation of A. fumigatus conidia from the environment, alveolar macrophages rapidly ingest and attempt to clear the invading pathogen. Conidia that escape the fungicidal activities of alveolar macrophages begin to germinate, leading to the rapid recruitment of neutrophils, which subsequently promote anti-hyphal defenses [8,9]. A major focus in innate immunity and host-pathogen interactions in the past decade has been elucidation of the receptors involved in the recognition and response to pathogens, the most characterized of which are the toll-like receptors (TLRs). However, in the context of macrophage–A. fumigatus interactions, there is no clear role for the TLRs in recognition and responsiveness. TLR2 and TLR4 are the most studied. However, the data on TLR2 are conflicting in that several reports have shown roles for and against its importance in host defense against this pathogen. For example, macrophages from TLR2−/− mice produce less tumor necrosis factor-α (TNF-α) [10] and CXCL2/MIP-2 [11] in response to A. fumigatus, whereas antibody-mediated blockage of TLR2 had no effect on TNF-α production [12] and TLR2−/− mice challenged with A. fumigatus survived better than wild-type control mice and had higher lung levels of TNF-α [13]. A role for TLR4 in the inflammatory response to A. fumigatus conidia, but not hyphae, has also been demonstrated [14,15], suggesting that TLR4 is critical for recognition of different A. fumigatus morphologies. TLR4−/− mice challenged with A. fumigatus have increased susceptibility compared with control mice [13], although this is not associated with defects in TNF-α production, as it was unaffected by TLR4−/− deficiency [13]. Other studies show that TLR4 signaling is essential for the anti-fungal effector activity of neutrophils [16], but not Kupffer cells [17], against both conidia and hyphae of A. fumigatus. In addition, many of these studies investigating the role of TLRs and A. fumigatus recognition have not been performed with alveolar macrophages, and thus it is uncertain if the mechanisms described are representative of these cells, which have a unique phenotype. Non-TLRs are also important in innate recognition of A. fumigatus. The cell wall of A. fumigatus is known to contain galactomannan moieties that are thought to be covalently linked to the non-reducing ends of beta-1,3–glucan side chains [18]. Accordingly, several studies have described mannose- or mannan-specific receptors in the uptake of A. fumigatus conidia by phagocytic cells [19]. Studies have identified the C-type lectin DC-SIGN (dendritic-cell-specific, ICAM-3-grabbing nonintegrin) as being involved in the binding of A. fumigatus conidia to human macrophages and dendritic cells [20]. The A. fumigatus cell wall is also rich in beta-1,3–glucan moieties, and although receptors for these carbohydrates, including CR3, have been implicated, the role of these receptors in innate immune response to this organism is unclear [21]. We have previously shown that recognition of cell-wall beta glucan plays an important role in the induction of inflammatory mediators by macrophage populations in response to Pneumocystis carinii and Candida albicans [22,23]. Dectin-1 is a 43-kDa, type II transmembrane receptor containing a single cytoplasmic immunoreceptor tyrosine activation motif and is the predominant macrophage receptor for beta-1,3 glucans [23–25]. As dectin-1 is highly expressed on resident alveolar macrophages, we examined the role of this receptor in response to A. fumigatus, and show here that dectin-1 is centrally involved in generating inflammatory responses to specific morphological forms of this organism both in vitro and in vivo. Results/Discussion Dectin-1 Is Involved in the Macrophage Cytokine and Chemokine Response to A. fumigatus Extensive reports have shown that zymosan, a beta-glucan–rich, yeast-derived particle, and the beta-glucan–containing fungal organisms C. albicans and P. carinii [22,25] bind to the dectin-1 beta-glucan receptor leading to phagocytosis and proinflammatory cytokine production [25,26]. A. fumigatus similarly possesses a cell wall significantly made up of beta glucans [18]; thus, we questioned whether macrophage interactions with A. fumigatus involved dectin-1. The results in Figure 1A show that RAW 264.7 cells, a macrophage cell line that was established from a tumor induced by Abelson murine leukemia virus [27], can produce a number of cytokines and chemokines in response to live A. fumigatus after 24 h of co-culture, and that this response is greatly enhanced in RAW 264.7 macrophages transduced to over-express dectin-1. In both cell types, inhibition of dectin-1 function with the monoclonal antibody 2A11 [26] significantly blocked these responses. Control experiments stimulated RAW 264.7 cells with the TLR ligands LPS and Pam(3)Cys in the presence or absence of 2A11. Results showed that dectin-1–blockage did not impair the TNF-α and MIP-2 response to these stimulants (unpublished data). Thus, dectin-1 can recognize and respond to live A. fumigatus. Innate immune cells of the lung, particularly alveolar macrophages, are critical for recognizing and reacting to A. fumigatus [8,9]. Since we have previously shown that dectin-1 is expressed at high levels on alveolar macrophages [22,28], we assessed their response to live A. fumigatus. The results in Figure 1B and 1C show that co-culture of live A. fumigatus with alveolar macrophages for 24 h led to production of TNF-α, CCL3/MIP-1α, CXCL2/MIP-2, IL-1β, IL-1α, IL-6, G-CSF, and GM-CSF, all of which were significantly attenuated by blocking dectin-1 with the monoclonal antibody 2A11 [26]. We observed little spontaneous production of cytokines and chemokines by unstimulated alveolar macrophages (e.g., spontaneous production of TNF-α, CCL3/MIP-1α, and CXCL2/MIP-2 was 54.7 ± 20, 186 ± 45, and 122 ± 25 pg/ml, respectively). T helper type-1 cell-mediated immunity is essential for optimal pulmonary host defense against fungal infections [29]. Innate cells, such as alveolar macrophages, play a central role in aiding the development of T helper type-1 responses [29]. In our studies, we found that alveolar macrophages stimulated with A. fumigatus had dectin-1–dependent induction of IFN-γ (Figure 1D), suggesting that dectin-1–ligation by A. fumigatus may also promote the generation of T helper type-1 immunity. IL-12 was also induced by A. fumigatus, but not found to be dectin-1–dependent (233 ± 83 pg/ml and 71 ± 22 pg/ml for isotype and 2A11, respectively, p = 0.0902). We also observed dectin-1–dependent induction of IL-10, a critical cytokine for regulating the pulmonary inflammatory response [30]. Previous studies indicated that cytochalasin D–treated macrophages stimulated with the fungal particle zymosan had enhanced TNF-α production, indicating that internalization was not required for dectin-1–mediated cytokine and chemokine production in RAW macrophages [23]. Although zymosan is employed as a representative fungal particle, it is not clear whether its use predicts the subsequent events associated with dectin-1 ligation by a live, intact fungal organism such as A. fumigatus. Experimental studies have shown that unstimulated alveolar macrophages are quite efficient at internalizing A. fumigatus conidia, a process that requires actin polymerization [31,32]. We questioned whether blocking actin polymerization would affect the ability of alveolar macrophages to produce inflammatory mediators in response to A. fumigatus. We found that alveolar macrophages pretreated with cytochalasin D retained the inflammatory response to live A. fumigatus (Figure 1E), and that the production of TNF-α, MIP-1α, and MIP-2 was exacerbated. Fluorescent deconvolution microscopy performed to assess the internalization of A. fumigatus in vehicle versus cytochalasin D-treated alveolar macrophages indicated efficient uptake of fluorescein isothiocyanate–conjugated conidia in vehicle-treated, but not cytochalasin D–treated, alveolar macrophages [20,31,32] (Figure S1). We did not observe non-specific induction of cytokines/chemokines by unstimulated alveolar macrophages in the presence of cytochalasin D. Moreover, lactate dehydrogenase (LDH) analysis of co-culture supernatants indicated that cytochalasin D concentration employed in these studies was not cytotoxic to alveolar macrophages (unpublished data). The heightened response in cytochalasin D-treated cultures is likely to be a result of prolonged stimulation at the cell surface, as observed previously with zymosan [33]. These results therefore suggest that alveolar macrophage cytokine and chemokine production in response to live A. fumigatus is mediated by dectin-1 and does not require organism uptake. Role of TLR2 in Dectin-1–Dependent Alveolar Macrophage Responses to A. fumigatus Dectin-1–mediated inflammatory responses to the fungal particle zymosan have been shown to be dependent on TLR2 [23,34]. However, the role of TLR2 in the inflammatory response to A. fumigatus is less clear, with reports both supporting and arguing against its role in the inflammatory response [10–13]. To address the role of dectin-1 in TLR2-mediated responses to A. fumigatus, we co-cultured alveolar macrophages isolated from wild-type C57BL/6 and TLR2−/− mice with A. fumigatus for 24 h, followed by analysis of cytokine and chemokine levels in co-culture supernatants. Data presented in Table 1 indicate that only TNF-α production was significantly affected (p 98% enriched for alveolar macrophages. A. fumigatus-macrophage co-culture for cytokine and chemokine induction. Alveolar macrophages or RAW-dectin macrophages [23] (3 × 105) were pre-treated with the anti–dectin-1 antibody 2A11 (5 μg/ml) or isotype for 30 min [26] and thereafter co-cultured with A. fumigatus conidia at a ratio of 1:1 for various times in a 96-well plate at 37 °C, 5% CO2. Controls included alveolar or RAW macrophages cultured in medium alone. Thereafter, the contents of each well were collected and the supernatants analyzed for IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-12p70, IL-17, IFN-γ, GM-CSF, G-CSF, TNF-α, MIP-1α, RANTES, and KC levels using the Bio-Plex Protein Array System (Bio-Rad, Hercules, California, United States) as per manufacturer's instructions. MIP-2 concentrations were determined using a commercially available ELISA kit (R&D Systems, Minneapolis, Minnesota, United States) as per manufacturer's instructions. To determine the response to SC, A. fumigatus RC were cultured for 6 h at 37 °C, 5% CO2 and allowed to swell [10,31,42]. Thereafter, macrophages were added for an additional 4 h. Controls for these studies included alveolar macrophages added to RC for 4 h. To determine the response to A. fumigatus hyphae, A. fumigatus conidia were cultured for 24 h at 37 °C, 5% CO2 prior to the addition of macrophages for 4 h, 8 h, or 24 h. Spontaneous cytokine and chemokine production in unstimulated cultures was subtracted from stimulated cultures in order to calculate the net concentration induced by A. fumigatus. To determine whether macrophage cell death occurred in co-cultures, supernatants were analyzed for LDH levels using an LDH kit (Sigma, St. Louis, Missouri, United States) as per manufacturer's instructions. Caspase 3 levels in cell lysates were also analyzed using the EnzChek Caspase 3 Assay Kit containing the rhodamine 110 bis-(N-CBZ-L-aspartyl-Lglutamyl-L-valyl-L-aspartic acid amide) (Z-DEVD–R110) substrate (Molecular Probes, Eugene, Oregon, United States) as per manufacturer's instructions. In specific experiments, macrophages were pretreated with cytochalasin D (10 μM), 250 μg/ml mannan (both from Sigma, St. Louis, Missouri, United States), or 100 μg/ml glucan phosphate [23,26] for 30 min at room temperature prior to addition to RC or SC. For analysis of responses to heat-killed A. fumigatus, A. fumigatus conidia were cultured for 3 h, 6 h, or 9 h at 37 °C, 5% CO2 followed by heat-killing at 100 °C for 10 min [10]. Thereafter, heat-killed A. fumigatus were co-cultured with alveolar macrophages at a ratio of 1:1 for 6 h at 37 °C, 5% CO2 in a 96-well plate. Some experiments employed A. fumigatus organisms killed by 70% ethanol treatment for 30 min at room temperature. All killed A. fumigatus were plated onto potato dextrose agar at 37 °C for 48 h to confirm negative growth. In specific experiments, RAW 264.7 macrophages were cultured with LPS (100 ng/ml) or Pam(3)Cys (10 μg/ml) (both from InvivoGen, San Diego, California, United States) in the presence or absence of 2A11 for 16 h, followed by analysis of cytokine and chemokine levels in supernatants. Analysis of A. fumigatus internalization. Alveolar macrophages were isolated as described above and adhered to poly-L-lysine-coated glass slides (Polysciences Inc., Warrington, Pennsylvania, United States) for 60 min at 37 °C. After being washed, separated slides were incubated with dimethyl sulfoxide (DMSO, vehicle) or cytochalasin D (10 μM) for 60 min at 37 °C, followed by incubation for 60 min with fluorescein isothiocyanate-labeled A. fumigatus conidia (0.1 mg/ml FITC for 60 min at room temperature) [20]. After being washed, slides were counterstained with 4,6-diamidino-2-phenylindole,dihydrochloride (DAPI, Molecular Probes, Eugene, Oregon, United States) nucleic-acid stain (0.4 μg/ml, 10 min at room temperature), followed by application of Prolong (Molecular Probes) mounting media. Slides were analyzed on a Zeiss Axioplan 2 upright fluorescent deconvolution microscope (Carl Zeiss, Oberkochen, Germany), and images were captured using 3I Slidebook Version 4.0 software (Optical Analysis, Nashua, New Hampshire, United States). s-Dectin-Fc constructs. Two soluble fusion proteins consisting of the extracellular domain of murine dectin-1 fused with either the heavy chain of murine IgG1 (s-dectin-mFc) or a mutated Fc portion of human IgG1 (s-dectin-hFc) were constructed. For s-dectin-mFc, cDNA encoding the extracellular domain of dectin-1, consisting of amino acids 69 to 244 [25], was amplified from a PCR 3.1 plasmid encoding the full-length murine dectin-1 receptor using the primers GGGTACCGACGACACAATTCAGGG and GGATCCACGCGGAACCAGCAGTTCCTTCTCACAG. The cDNA encoding CH2-CH3 murine IgG1 regions were amplified using the primers CTGGTTCCGCGTGGATCCGTGCCCAGGGATTGTGGT and GAATTCTCATTTACCAGGAGAGTG from the pACCKP2 plasmid containing the TNF receptor extracellular domain linked to murine IgG1 heavy chain [43]. For the s-dectin-hFc construct, the pSecTag2 (Invitrogen) plasmid containing a mutated Fc portion of human IgG1 [38] was used. The products were combined at a 1:1 ratio, and PCR was performed using the 5′ dectin-1 primer and the 3′ IgG1 primer. The chimeric PCR product was isolated and purified via gel extraction and was subcloned into the TOPO-TA Vector (Invitrogen). Using M13 Forward and Reverse primers, the s-dectin-Fc DNAs were amplified via PCR and digested with KpnI and EcoRI and inserted in-frame into the multiple cloning site of pSecTag2 C mammalian expression vector (Invitrogen), containing the Igκ-leader sequence, facilitating protein secretion. To verify fusion protein expression, the pSecTag2 s-dectin-mFc or s-dectin-hFc constructs were transfected into HEK293T cells using Lipofectamine 2000 (Invitrogen). Western blotting of supernatants from transfected cells revealed a 120-kD product on non-reducing SDS-PAGE that reacted with either anti-human IgG1 or anti-murine IgG1. For analysis of the effects of s-dectin-hFc on cytokine and chemokine production, alveolar macrophages were co-cultured with A. fumigatus conidia at a ratio of 1:1 for 24 h in the presence or absence of s-dectin-hFc (10 μg/ml) in a 96-well plate at 37 °C, 5% CO2. Controls included alveolar macrophages cultured in medium alone. Thereafter, the contents of each well were collected and the supernatants analyzed for cytokines and chemokines by Bio-Plex (Bio-Rad, Hercules, California, United States). Analysis of A. fumigatus, beta-glucan exposure. A. fumigatus RC were adhered for 2 h, 6 h, 10 h, or 24 h to sterile, round glass coverslips and incubated in the presence or absence of conditioned media containing s-dectin-mFc followed by Cy3-conjugated, goat anti-mouse IgG1. After being washed, the coverslips were mounted onto glass slides and Prolong mounting media (Molecular Probes) was applied. The coverslips were analyzed on a Zeiss Axioplan 2 upright fluorescent deconvolution microscope (Zeiss), and images were captured using 3I Slidebook Version 4.0 software. In vivo A. fumigatus challenge. Mice were lightly anesthetized with isoflurane and held in a vertical, upright position. A. fumigatus conidia, 5 × 106 in a volume of 50 μl, in the presence or absence of s-dectin-hFc (40 μg/ml) was administered to mice via the caudal oropharynx. At 24 h post-inoculation, mice were anesthetized with intraperitoneal pentobarbital, sacrificed by exsanguination, and a BAL was performed. The first ml of BAL fluid was collected, the supernatant clarified by centrifugation, and stored at −80 °C until use in Bio-Plex (Bio-Rad) assays. For total BAL-fluid cell determinations, the cell pellet from each individual sample was resuspended in 1 ml of tissue culture media and enumerated by a hemacytometer using trypan blue dye exclusion. To determine neutrophil counts in BAL fluid, 2.5 × 104 cells from each lavage pellet was cytospun onto slides and stained with Diff-Quik (Fisher Scientific, Pittsburgh, Pennsylvania, United States). Thereafter, percentages of lymphocytes, macrophages, and neutrophils were determined in blinded fashion. To determine A. fumigatus lung burden, lungs were excised from non-lavaged untreated and s-dectin-hFc–treated mice and homogenized using a Polytron PT1200E tissue homogenizer (Kinematica, Newark, New Jersey, United States). Serial 1:10 dilutions were plated onto potato dextrose agar, and CFU/lung were determined after 24 h at 37 °C. Statistics. Data were analyzed using StatView statistical software (Brainpower, Calabasas, California, United States). Comparisons between groups were made with analyses of variance and appropriate ad hoc testing. The two-tailed unpaired t test or the two-tailed nonparametric Mann-Whitney test was employed. Significance was accepted at p < 0.05. Supporting Information Figure S1 Internalization of A. fumigatus by Alveolar Macrophages (142 KB PDF) Click here for additional data file.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                PLOS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                4 May 2023
                May 2023
                : 19
                : 5
                : e1011334
                Affiliations
                [1 ] Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, New Hampshire, United States of America
                [2 ] University of California, Merced, Department of Molecular and Cell Biology, Merced, California, United States of America
                University of Maryland, Baltimore, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0003-3631-2594
                Article
                PPATHOGENS-D-22-02211
                10.1371/journal.ppat.1011334
                10159189
                37141196
                009e9f85-291b-45c6-89d0-3739ca5e0a3c
                © 2023 Obar, Shepardson

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Figures: 1, Tables: 0, Pages: 6
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100006492, Division of Intramural Research, National Institute of Allergy and Infectious Diseases;
                Award ID: R01AI139133
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100006492, Division of Intramural Research, National Institute of Allergy and Infectious Diseases;
                Award ID: R21AI152019
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000057, National Institute of General Medical Sciences;
                Award ID: P20GM103474
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100006492, Division of Intramural Research, National Institute of Allergy and Infectious Diseases;
                Award ID: K22AI153671
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100005834, Francis Family Foundation;
                Award Recipient :
                This work has been supported by National Institutes of Health awards R01 AI139133 (JJO), R21 AI152019 (JJO), P20 GM103474 (KMS), and K22 AI153671 (KMS) and a Parker B. Francis Fellowship (KMS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Pearls
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Transmission and Infection
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Respiratory Infections
                Medicine and Health Sciences
                Medical Conditions
                Respiratory Disorders
                Respiratory Infections
                Medicine and Health Sciences
                Pulmonology
                Respiratory Disorders
                Respiratory Infections
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Fungal Diseases
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Fungal Molds
                Aspergillus
                Medicine and Health Sciences
                Pharmacology
                Drugs
                Antimicrobials
                Antifungals
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobials
                Antifungals
                Biology and Life Sciences
                Mycology
                Antifungals
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Fungal Molds
                Aspergillus
                Aspergillus Fumigatus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Aspergillus Fumigatus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Fungal Pathogens
                Aspergillus Fumigatus
                Biology and Life Sciences
                Mycology
                Fungal Pathogens
                Aspergillus Fumigatus
                Biology and Life Sciences
                Physiology
                Respiratory Physiology
                Biology and Life Sciences
                Microbiology
                Microbial Physiology
                Fungal Physiology
                Biology and Life Sciences
                Mycology
                Fungal Physiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article