33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulatory T Cells Enhance Susceptibility to Experimental Trypanosoma Congolense Infection Independent of Mouse Genetic Background

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          BALB/c mice are highly susceptible while C57BL/6 are relatively resistant to experimental Trypanosoma congolense infection. Although regulatory T cells (Tregs) have been shown to regulate the pathogenesis of experimental T. congolense infection, their exact role remains controversial. We wished to determine whether Tregs contribute to distinct phenotypic outcomes in BALB/c and C57BL/6 mice and if so how they operate with respect to control of parasitemia and production of disease-exacerbating proinflammatory cytokines.

          Methodology/Findings

          BALB/c and C57BL/6 mice were infected intraperitoneally (i.p) with 10 3 T. congolense clone TC13 and both the kinetics of Tregs expansion and intracellular cytokine profiles in the spleens and livers were monitored directly ex vivo by flow cytometry. In some experiments, mice were injected with anti-CD25 mAb prior or post T. congolense infection or adoptively (by intravenous route) given highly enriched naïve CD25 + T lymphocytes prior to T. congolense infection and the inflammatory cytokine/chemokine levels and survival were monitored. In contrast to a transient and non significant increase in the percentages and absolute numbers of CD4 +CD25 +Foxp3 + T cells (Tregs) in C57BL/6 mouse spleens and livers, a significant increase in the percentage and absolute numbers of Tregs was observed in spleens of infected BALB/c mice. Ablation or increasing the number of CD25 + cells in the relatively resistant C57BL/6 mice by anti-CD25 mAb treatment or by adoptive transfer of CD25 + T cells, respectively, ameliorates or exacerbates parasitemia and production of proinflammatory cytokines.

          Conclusion

          Collectively, our results show that regulatory T cells contribute to susceptibility in experimental murine trypanosomiasis in both the highly susceptible BALB/c and relatively resistant C57BL/6 mice.

          Author Summary

          BALB/c mice are highly susceptible while C57BL/6 is relatively resistant to experimental Trypanosoma congolense infection. Acute death observed in infected BALB/c mice is usually associated with the excessive production of pro-inflammatory cytokines. Regulatory T cells (Tregs) have been shown to play a significant role in the pathogenesis of many diseases including those caused by parasites. However, the role of Tregs in the pathogenesis of T. congolense infection remains unclear. We were interested in addressing the following questions: Do Tregs contribute to the distinct phenotypic outcomes observed in T. congolense-infected BALB/c and C57BL/6 mice? If so, where and how do they operate with respect to parasitemia and cytokine response? By selectively altering the numbers of these cells either by targeted depletion with monoclonal antibody or adoptive transfer of highly enriched naïve CD25 + cells prior to infection, we show that Tregs impairs efficient parasite control and impacts on production of disease-exacerbating proinflammatory cytokines. Collectively, our findings suggest that Tregs contribute to enhanced susceptibility to experimental T. congolense infection in mice.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.

          Naturally arising CD25(+)CD4(+) regulatory T cells actively maintain immunological self-tolerance. Deficiency in or dysfunction of these cells can be a cause of autoimmune disease. A reduction in their number or function can also elicit tumor immunity, whereas their antigen-specific population expansion can establish transplantation tolerance. They are therefore a good target for designing ways to induce or abrogate immunological tolerance to self and non-self antigens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity.

            The long-term persistence of pathogens in a host that is also able to maintain strong resistance to reinfection, referred to as concomitant immunity, is a hallmark of certain infectious diseases, including tuberculosis and leishmaniasis. The ability of pathogens to establish latency in immune individuals often has severe consequences for disease reactivation. Here we show that the persistence of Leishmania major in the skin after healing in resistant C57BL/6 mice is controlled by an endogenous population of CD4+CD25+ regulatory T cells. These cells constitute 5-10% of peripheral CD4+ T cells in naive mice and humans, and suppress several potentially pathogenic responses in vivo, particularly T-cell responses directed against self-antigens. During infection by L. major, CD4+CD25+ T cells accumulate in the dermis, where they suppress-by both interleukin-10-dependent and interleukin-10-independent mechanisms-the ability of CD4+CD25- effector T cells to eliminate the parasite from the site. The sterilizing immunity achieved in mice with impaired IL-10 activity is followed by the loss of immunity to reinfection, indicating that the equilibrium established between effector and regulatory T cells in sites of chronic infection might reflect both parasite and host survival strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development.

              Forkhead winged-helix transcription factor Foxp3 serves as the dedicated mediator of the genetic program governing CD25+CD4+ regulatory T cell (T(R)) development and function in mice. In humans, its role in mediating T(R) development has been controversial. Furthermore, the fate of T(R) precursors in FOXP3 deficiency has yet to be described. Making use of flow cytometric detection of human FOXP3, we have addressed the relationship between FOXP3 expression and human T(R) development. Unlike murine Foxp3- T cells, a small subset of human CD4+ and CD8+ T cells transiently up-regulated FOXP3 upon in vitro stimulation. Induced FOXP3, however, did not alter cell-surface phenotype or suppress T helper 1 cytokine expression. Furthermore, only ex vivo FOXP3+ T(R) cells persisted after prolonged culture, suggesting that induced FOXP3 did not activate a T(r) developmental program in a significant number of cells. FOXP3 flow cytometry was also used to further characterize several patients exhibiting symptoms of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) with or without FOXP3 mutations. Most patients lacked FOXP3-expressing cells, further solidifying the association between FOXP3 deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Interestingly, one patient bearing a FOXP3 mutation enabling expression of stable FOXP3(mut) protein exhibited FOXP3(mut)-expressing cells among a subset of highly activated CD4+ T cells. This observation raises the possibility that the severe autoimmunity in FOXP3 deficiency can be attributed, in part, to aggressive T helper cells that have developed from T(R) precursors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                July 2012
                31 July 2012
                : 6
                : 7
                : e1761
                Affiliations
                [1 ]Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
                [2 ]Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
                Institut Pasteur, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JEU IO. Performed the experiments: IO PJ CO SK ZM. Analyzed the data: IO SK CO. Contributed reagents/materials/analysis tools: ZM CO. Wrote the paper: JEU IO.

                Article
                PNTD-D-11-01064
                10.1371/journal.pntd.0001761
                3409116
                22860150
                006bba1c-3b36-43c4-9409-69e514b2583a
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 October 2011
                : 20 June 2012
                Page count
                Pages: 9
                Funding
                This work was supported by grants from the National Sciences and Engineering Research Council (NSERC), http://www.nserc-crsng.gc.ca (Discovery Grant) and Manitoba Health Research Council (MHRC) Research Chair, http://mhrc.mb.ca (to JEU). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article