29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response

      Vaccine
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates.

          The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182 kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8-10 kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3 kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation

            African swine fever (ASF) is an acute haemorrhagic disease of domestic pigs for which there is currently no vaccine. We showed that experimental immunisation of pigs with the non-virulent OURT88/3 genotype I isolate from Portugal followed by the closely related virulent OURT88/1 genotype I isolate could confer protection against challenge with virulent isolates from Africa including the genotype I Benin 97/1 isolate and genotype X Uganda 1965 isolate. This immunisation strategy protected most pigs challenged with either Benin or Uganda from both disease and viraemia. Cross-protection was correlated with the ability of different ASFV isolates to stimulate immune lymphocytes from the OURT88/3 and OURT88/1 immunised pigs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus.

              To understand the mechanisms involved in protective immunity to African swine fever virus (ASFV) infection, the observation that infection with the avirulent Portuguese ASFV isolate OUR/T88/3 protects outbred pigs from challenge with the virulent Portuguese ASFV isolate OUR/T88/1 was exploited. It was demonstrated that pigs exposed to OUR/T88/3 and then depleted of CD8+ lymphocytes were no longer fully protected from OUR/T88/1 challenge. This indicated that CD8+ lymphocytes play an important role in the protective immune response to ASFV infection and that anti-ASFV antibody alone, from OUR/T88/3 infection, was not sufficient to protect pigs from OUR/T88/1 challenge. Inbred pigs of the cc haplotype infected with OUR/T88/3 were not always protected from OUR/T88/1 challenge and developed both viraemia and fever. Such viraemia was always correlated with increased numbers of circulating CD8beta+ lymphocytes, indicating a specific role for CD8beta+ lymphocytes in combating viraemia. These experiments indicate an important role for CD8+ lymphocytes, particularly CD8beta+ lymphocytes, in ASF protective immunity.
                Bookmark

                Author and article information

                Journal
                10.1016/j.vaccine.2016.08.011
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article