79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      African Swine Fever Virus: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          African swine fever (ASF) is a highly contagious viral disease of swine which causes high mortality, approaching 100%, in domestic pigs. ASF is caused by a large, double stranded DNA virus, ASF virus (ASFV), which replicates predominantly in the cytoplasm of macrophages and is the only member of the Asfarviridae family, genus Asfivirus. The natural hosts of this virus include wild suids and arthropod vectors of the Ornithodoros genus. The infection of ASFV in its reservoir hosts is usually asymptomatic and develops a persistent infection. In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which there is no effective vaccine. Identification of ASFV genes involved in virulence and the characterization of mechanisms used by the virus to evade the immune response of the host are recognized as critical steps in the development of a vaccine. Moreover, the interplay of the viral products with host pathways, which are relevant for virus replication, provides the basic information needed for the identification of potential targets for the development of intervention strategies against this disease.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Genotyping field strains of African swine fever virus by partial p72 gene characterisation.

          A PCR-based sequencing method was developed which permits detection and characterization of African swine fever virus (ASFV) variants within 5 and 48 h, respectively, of receipt of a clinical specimen. Amplification of a 478 bp fragment corresponding to the C-terminal end of the p72 gene, confirms virus presence with genetic characterization being achieved by nucleotide sequence determination and phylogenetic analysis. The method was applied to 55 viruses including those representative of the major ASF lineages identified previously by restriction fragment length polymorphism (RFLP) analysis. Results confirmed that the p72 genotyping method identifies the same major viral groupings. Characterization of additional viruses of diverse geographical, species and temporal origin using the PCR-based method indicated the presence of ten major ASF genotypes on the African continent, the largest of which comprised a group of genetically homogeneous viruses recovered from outbreaks in Europe, South America, the Caribbean and West Africa (the ESAC-WA genotype). In contrast, viruses from southern and East African countries were heterogeneous, with multiple genotypes being present within individual countries. This study provides a rapid and accurate means of determining the genotype of field and outbreak strains of ASF and is therefore useful for molecular epidemiological clarification of ASF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            To kill or be killed: viral evasion of apoptosis.

            In the struggle between virus and host, control over the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host in order to complete their replication cycle. Many of the counter-assaults mounted by the immune system incorporate activation of the apoptotic pathway-particularly by members of the tumor necrosis factor cytokine family-as a mechanism to restrict viral replication. Thus, apoptosis serves as a powerful selective pressure for the virus to evade. However, for the host, success is harsh and potentially costly, as apoptosis often contributes to pathogenesis. Here we examine some of the molecular mechanisms by which viruses manipulate the apoptotic machinery to their advantage and how we (as vertebrates) have evolved and learned to cope with viral evasion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response

              African swine fever virus (ASFV) encodes multiple copies of MGF360 and MGF530/505 gene families. These genes have been implicated in the modulation of the type I interferon (IFN) response. We investigated the effect of modulating the IFN response on virus attenuation and induction of protective immunity by deleting genes MGF360 (MGF360-10L, 11L, 12L, 13L, 14L) and MGF530/505 (MGF530/505-1R, 2R and 3R) and interrupting genes (MGF360-9L and MGF530/505-4R) in the genome of the virulent ASFV isolate Benin 97/1. Replication of this deletion mutant, BeninΔMGF, in porcine macrophages in vitro was similar to that of the parental virulent virus Benin 97/1 and the natural attenuated isolate OURT88/3, which has a similar deletion of MGF360 and 530/505 genes. Levels of IFN-β mRNA in macrophages infected with virulent Benin 97/1 isolate were barely detectable but high levels were detected in macrophages infected with OURT88/3 and intermediate levels in macrophages infected with BeninΔMGF. The data confirms that these MGF360 and MGF530/505 genes have roles in suppressing induction of type I IFN. Immunisation and boost of pigs with BeninΔMGF showed that the virus was attenuated and all pigs (5/5) were protected against challenge with a lethal dose of virulent Benin 97/1. A short transient fever was observed at day 5 or 6 post-immunisation but no other clinical signs. Following immunisation and boost with the OURT88/3 isolate 3 of 4 pigs were protected against challenge. Differences were observed in the cellular and antibody responses in pigs immunised with BeninΔMGF compared to OURT88/3. Deletion of IFN modulators is a promising route for construction of rationally attenuated ASFV candidate vaccine strains.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                10 May 2017
                May 2017
                : 9
                : 5
                : 103
                Affiliations
                Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; galindo@ 123456inia.es
                Author notes
                [* ]Correspondence: calonso@ 123456inia.es
                Article
                viruses-09-00103
                10.3390/v9050103
                5454416
                28489063
                1afdadb6-7928-407e-be32-7d4826ea5f08
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 April 2017
                : 04 May 2017
                Categories
                Review

                Microbiology & Virology
                african swine fever virus,asfv,virus entry,endocytosis,endosomal pathway,host cell targets,cellular responses,er stress,apoptosis,autophagy,a179l

                Comments

                Comment on this article