19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Optimal Noise Filtering in the Chemotactic Response of Escherichia coli

      research-article
      1 , 2 , 1 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Information-carrying signals in the real world are often obscured by noise. A challenge for any system is to filter the signal from the corrupting noise. This task is particularly acute for the signal transduction network that mediates bacterial chemotaxis, because the signals are subtle, the noise arising from stochastic fluctuations is substantial, and the system is effectively acting as a differentiator which amplifies noise. Here, we investigated the filtering properties of this biological system. Through simulation, we first show that the cutoff frequency has a dramatic effect on the chemotactic efficiency of the cell. Then, using a mathematical model to describe the signal, noise, and system, we formulated and solved an optimal filtering problem to determine the cutoff frequency that bests separates the low-frequency signal from the high-frequency noise. There was good agreement between the theory, simulations, and published experimental data. Finally, we propose that an elegant implementation of the optimal filter in combination with a differentiator can be achieved via an integral control system. This paper furnishes a simple quantitative framework for interpreting many of the key notions about bacterial chemotaxis, and, more generally, it highlights the constraints on biological systems imposed by noise.

          Synopsis

          Bacterial motility involves successive periods of relatively straight runs, interspersed by tumbles—periods in which the bacteria are reoriented randomly. To move in the direction of chemical gradients—a process known as chemotaxis—cells modulate the duration of the runs. To ascertain whether the direction of the current run is desirable, cells continuously monitor temporal changes in the chemoattractant concentration. However, the decisions can only be based on imperfect information about the environment because binding noise implies that receptor occupancy is a limited measure of the chemoattractant concentration. Bacteria cope by filtering the sensed signal to reduce the effect of this binding noise. Through simulations, Andrews, Yi, and Iglesias demonstrate that there is a particular filter cutoff frequency that achieves optimal chemotaxis. Moreover, using a model of the sensing mechanism, the authors also compute the theoretically optimal system for estimating the chemoattractant concentration from the noisy receptor-occupancy signal. Andrews and colleagues show that these two filtering systems are closely matched, and that their frequency-dependent behavior corresponds to published experimental data. Their results highlight the constraints that noise places on cellular performance as well as demonstrating how cells have evolved to deal with this uncertainty in an optimal fashion.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Stochasticity in gene expression: from theories to phenotypes.

          Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physics of chemoreception.

            Statistical fluctuations limit the precision with which a microorganism can, in a given time T, determine the concentration of a chemoattractant in the surrounding medium. The best a cell can do is to monitor continually the state of occupation of receptors distributed over its surface. For nearly optimum performance only a small fraction of the surface need be specifically adsorbing. The probability that a molecule that has collided with the cell will find a receptor is Ns/(Ns + pi a), if N receptors, each with a binding site of radius s, are evenly distributed over a cell of radius a. There is ample room for many indenpendent systems of specific receptors. The adsorption rate for molecules of moderate size cannot be significantly enhanced by motion of the cell or by stirring of the medium by the cell. The least fractional error attainable in the determination of a concentration c is approximately (TcaD) - 1/2, where D is diffusion constant of the attractant. The number of specific receptors needed to attain such precision is about a/s. Data on bacteriophage absorption, bacterial chemotaxis, and chemotaxis in a cellular slime mold are evaluated. The chemotactic sensitivity of Escherichia coli approaches that of the cell of optimum design.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Robustness in simple biochemical networks.

              Cells use complex networks of interacting molecular components to transfer and process information. These "computational devices of living cells" are responsible for many important cellular processes, including cell-cycle regulation and signal transduction. Here we address the issue of the sensitivity of the networks to variations in their biochemical parameters. We propose a mechanism for robust adaptation in simple signal transduction networks. We show that this mechanism applies in particular to bacterial chemotaxis. This is demonstrated within a quantitative model which explains, in a unified way, many aspects of chemotaxis, including proper responses to chemical gradients. The adaptation property is a consequence of the network's connectivity and does not require the 'fine-tuning' of parameters. We argue that the key properties of biochemical networks should be robust in order to ensure their proper functioning.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                pcbi
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2006
                17 November 2006
                5 October 2006
                : 2
                : 11
                : e154
                Affiliations
                [1 ]Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
                [2 ]Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
                Institute for Systems Biology, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: pi@ 123456jhu.edu
                Article
                06-PLCB-RA-0170R3 plcb-02-11-11
                10.1371/journal.pcbi.0020154
                1636674
                17112312
                0371900d-01b4-4870-8e37-1d39dc6be2aa
                Copyright: © 2006 Andrews et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 May 2006
                : 5 October 2006
                Page count
                Pages: 12
                Categories
                Research Article
                Bioinformatics - Computational Biology
                Cell Biology
                Systems Biology
                None
                Custom metadata
                Andrews BW, Yi TM, Iglesias PA (2006) Optimal noise filtering in the chemotactic response of Escherichia coli. PLoS Comput Biol 2(11): e154. doi:10.1371/journal.pcbi.0020154

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article