24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Disseminated Ureaplasma infection as a cause of fatal hyperammonemia in humans

      Science translational medicine
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Mycoplasmas and ureaplasmas as neonatal pathogens.

          The genital mycoplasmas represent a complex and unique group of microorganisms that have been associated with a wide array of infectious diseases in adults and infants. The lack of conclusive knowledge regarding the pathogenic potential of Mycoplasma and Ureaplasma spp. in many conditions is due to a general unfamiliarity of physicians and microbiology laboratories with their fastidious growth requirements, leading to difficulty in their detection; their high prevalence in healthy persons; the poor design of research studies attempting to base association with disease on the mere presence of the organisms in the lower urogenital tract; the failure to consider multifactorial aspects of diseases; and considering these genital mycoplasmas only as a last resort. The situation is now changing because of a greater appreciation of the genital mycoplasmas as perinatal pathogens and improvements in laboratory detection, particularly with regard to the development of powerful molecular nucleic acid amplification tests. This review summarizes the epidemiology of genital mycoplasmas as causes of neonatal infections and premature birth; evidence linking ureaplasmas with bronchopulmonary dysplasia; recent changes in the taxonomy of the genus Ureaplasma; the neonatal host response to mycoplasma and ureaplasma infections; advances in laboratory detection, including molecular methods; and therapeutic considerations for treatment of systemic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lung transplant infection

            ABSTRACT Lung transplantation has become an accepted therapeutic procedure for the treatment of end‐stage pulmonary parenchymal and vascular disease. Despite improved survival rates over the decades, lung transplant recipients have lower survival rates than other solid organ transplant recipients. The morbidity and mortality following lung transplantation is largely due to infection‐ and rejection‐related complications. This article will review the common infections that develop in the lung transplant recipient, including the general risk factors for infection in this population, and the most frequent bacterial, viral, fungal and other less frequent opportunistic infections. The epidemiology, diagnosis, prophylaxis, treatment and outcomes for the different microbial pathogens will be reviewed. The effects of infection on lung transplant rejection will also be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Standardized methods and quality control limits for agar and broth microdilution susceptibility testing of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum.

              An international multilaboratory collaborative study was conducted to develop standard media and consensus methods for the performance and quality control of antimicrobial susceptibility testing of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum using broth microdilution and agar dilution techniques. A reference strain from the American Type Culture Collection was designated for each species, which was to be used for quality control purposes. Repeat testing of replicate samples of each reference strain by participating laboratories utilizing both methods and different lots of media enabled a 3- to 4-dilution MIC range to be established for drugs in several different classes, including tetracyclines, macrolides, ketolides, lincosamides, and fluoroquinolones. This represents the first multilaboratory collaboration to standardize susceptibility testing methods and to designate quality control parameters to ensure accurate and reliable assay results for mycoplasmas and ureaplasmas that infect humans.
                Bookmark

                Author and article information

                Journal
                10.1126/scitranslmed.aaa8419
                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                Comments

                Comment on this article