34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering.

      Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine
      Animals, Bone Development, physiology, Bone Substitutes, Bone Transplantation, methods, Humans, Joint Prosthesis, Regeneration, Tissue Engineering

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As the population ages, the number of operations performed on bone is expected to increase. Diseases such as arthritis, tumours, and trauma can lead to defects in the skeleton requiring an operation to replace or restore the lost bone. Surgeons can use autografts, allografts, and/or bone graft substitutes to restore areas of bone loss. Surgical implants are also used in addition or in isolation to replace the diseased bone. This review considers the application of available bone grafts in different clinical settings. It also discusses recently introduced bioactive biomaterials and highlights the clinical difficulties and technological deficiencies that exist in our current surgical practice.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder.

          A key tenet of bone tissue engineering is the development of scaffold materials that can stimulate stem cell differentiation in the absence of chemical treatment to become osteoblasts without compromising material properties. At present, conventional implant materials fail owing to encapsulation by soft tissue, rather than direct bone bonding. Here, we demonstrate the use of nanoscale disorder to stimulate human mesenchymal stem cells (MSCs) to produce bone mineral in vitro, in the absence of osteogenic supplements. This approach has similar efficiency to that of cells cultured with osteogenic media. In addition, the current studies show that topographically treated MSCs have a distinct differentiation profile compared with those treated with osteogenic media, which has implications for cell therapies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fracture healing: The diamond concept

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs.

              The purpose of the present study was to evaluate the influence of different surface characteristics on bone integration of titanium implants. Hollow-cylinder implants with six different surfaces were placed in the metaphyses of the tibia and femur in six miniature pigs. After 3 and 6 weeks, the implants with surrounding bone were removed and analyzed in undecalcified transverse sections. The histologic examination revealed direct bone-implant contact for all implants. However, the morphometric analyses demonstrated significant differences in the percentage of bone-implant contact, when measured in cancellous bone. Electropolished as well as the sandblasted and acid pickled (medium grit; HF/HNO3) implant surfaces had the lowest percentage of bone contact with mean values ranging between 20 and 25%. Sandblasted implants with a large grit and titanium plasma-sprayed implants demonstrated 30-40% mean bone contact. The highest extent of bone-implant interface was observed in sandblasted and acid attacked surfaces (large grit; HCl/H2SO4) with mean values of 50-60%, and hydroxylapatite (HA)-coated implants with 60-70%. However, the HA coating consistently revealed signs of resorption. It can be concluded that the extent of bone-implant interface is positively correlated with an increasing roughness of the implant surface.
                Bookmark

                Author and article information

                Comments

                Comment on this article