8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Materials and structural designs of stretchable conductors

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stretchable conductors developed through structural and materials engineering are contributing to the realization of next-generation soft electronic devices for healthcare and soft-robotics.

          Abstract

          Stretchable conductors are essential building blocks for stretchable electronic devices used in next-generation wearables and soft robotics. Over 10 years of research in stretchable electronics has produced stretchable sensors, circuits, displays, and energy harvesters, mostly enabled by unique stretchable conductors. This review covers recent advances in stretchable conductors, which have been achieved by engineering their structures, materials, or both. Advantages, mechanisms, and limitations of the different classes of stretchable conductors are discussed to provide insight into which class of stretchable conductor is suitable for fabrication of various stretchable electronic devices. The significantly improved electronic performance and wide variety of stretchable conductors are creating a new paradigm in stretchable electronics.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          An ultra-lightweight design for imperceptible plastic electronics.

          Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidermal electronics.

            We report classes of electronic systems that achieve thicknesses, effective elastic moduli, bending stiffnesses, and areal mass densities matched to the epidermis. Unlike traditional wafer-based technologies, laminating such devices onto the skin leads to conformal contact and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. We describe systems incorporating electrophysiological, temperature, and strain sensors, as well as transistors, light-emitting diodes, photodetectors, radio frequency inductors, capacitors, oscillators, and rectifying diodes. Solar cells and wireless coils provide options for power supply. We used this type of technology to measure electrical activity produced by the heart, brain, and skeletal muscles and show that the resulting data contain sufficient information for an unusual type of computer game controller.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An integrated design and fabrication strategy for entirely soft, autonomous robots.

              Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                June 4 2019
                2019
                : 48
                : 11
                : 2946-2966
                Affiliations
                [1 ]Department of Electrical Engineering and Information Systems
                [2 ]The University of Tokyo
                [3 ]Tokyo 113-8656
                [4 ]Japan
                [5 ]Innovative Center for Flexible Devices
                [6 ]School of Materials Science and Engineering
                [7 ]Nanyang Technological University
                [8 ]Singapore 639798
                [9 ]Singapore
                [10 ]Department of Chemical Engineering
                [11 ]Stanford University
                [12 ]Stanford
                [13 ]USA
                [14 ]Center for Emergent Matter Science (CEMS)
                Article
                10.1039/C8CS00814K
                acbe0de0-ae41-4c58-a692-3b6287967168
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article