23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of three-dimensional entangled states between a single atom and a Bose-Einstein Condensate via adiabatic passage

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose a robust scheme to prepare three-dimensional entanglement states between a single atom and a Bose-Einstein Condensate (BEC) via stimulated Raman adiabatic passage (STIRAP) techniques. The atomic spontaneous radiation, the cavity decay, and the fiber loss are efficiently suppressed by the engineering adiabatic passage. Our scheme is also robust to the variation of atom number in the BEC.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Quantum Internet

          H. Kimble (2008)
          Quantum networks offer a unifying set of opportunities and challenges across exciting intellectual and technical frontiers, including for quantum computation, communication, and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for the generation and characterization of quantum coherence and entanglement. Fundamental to this endeavor are quantum interconnects that convert quantum states from one physical system to those of another in a reversible fashion. Such quantum connectivity for networks can be achieved by optical interactions of single photons and atoms, thereby enabling entanglement distribution and quantum teleportation between nodes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Coherent population transfer among quantum states of atoms and molecules

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantum state transfer and entanglement distribution among distant nodes in a quantum network

              We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially-separated nodes of a quantum network. The transmission protocol employs special laser pulses which excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wavepacket that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.
                Bookmark

                Author and article information

                Journal
                10.1364/OE.20.014547
                1201.0248

                Quantum physics & Field theory
                Quantum physics & Field theory

                Comments

                Comment on this article