4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hormonal and proteomic analyses of southern blight disease caused by Athelia rolfsii and root chitosan priming on Cannabis sativa in an in vitro hydroponic system

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Southern blight disease, caused by the fungal pathogen Athelia rolfsii, suppresses plant growth and reduces product yield in Cannabis sativa agriculture. Mechanisms of pathology of this soil‐borne disease remain poorly understood, with disease management strategies reliant upon broad‐spectrum antifungal use. Exposure to chitosan, a natural elicitor, has been proposed as an alternative method to control diverse fungal diseases in an eco‐friendly manner. In this study, C. sativa plants were grown in the Root‐TRAPR system, a transparent hydroponic growth device, where plant roots were primed with .2% colloidal chitosan prior to A. rolfsii inoculation. Both chitosan‐primed and unprimed inoculated plants displayed classical symptoms of wilting and yellowish leaves, indicating successful infection. Non‐primed infected plants showed increased shoot defense responses with doubling of peroxidase and chitinase activities. The levels of growth and defense hormones including auxin, cytokinin, and jasmonic acid were increased 2–5‐fold. In chitosan‐primed infected plants, shoot peroxidase activity and phytohormone levels were decreased 1.5–4‐fold relative to the unprimed infected plants. When compared with shoots, roots were less impacted by A. rolfsii infection, but the pathogen secreted cell wall‐degrading enzymes into the root‐growth solution. Chitosan priming inhibited root growth, with root lengths of chitosan‐primed plants approximately 65% shorter than the control, but activated root defense responses, with root peroxidase activity increased 2.7‐fold along with increased secretion of defense proteins. The results suggest that chitosan could be an alternative platform to manage southern blight disease in C. sativa cultivation; however, further optimization is required to maximize effectiveness of chitosan.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plant hormone-mediated regulation of stress responses

          Background Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. Results Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. Conclusions The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk mechanisms among various hormones in coordinating growth under stress will be an important theme in the field of abiotic stress research. Such efforts will help to reveal important points of genetic control that can be useful to engineer stress tolerant crops.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

            Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Top 10 oomycete pathogens in molecular plant pathology.

              Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.
                Bookmark

                Author and article information

                Contributors
                psuwanchaika@student.unimelb.edu.au
                Journal
                Plant Direct
                Plant Direct
                10.1002/(ISSN)2475-4455
                PLD3
                Plant Direct
                John Wiley and Sons Inc. (Hoboken )
                2475-4455
                08 September 2023
                September 2023
                : 7
                : 9 ( doiID: 10.1002/pld3.v7.9 )
                : e528
                Affiliations
                [ 1 ] School of BioSciences University of Melbourne Melbourne Victoria Australia
                [ 2 ] Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute University of Melbourne Melbourne Victoria Australia
                [ 3 ] Cannabis and Biostimulants Research Group Pty Ltd Melbourne Victoria Australia
                [ 4 ] Australian National Phenome Centre Murdoch University Perth Western Australia Australia
                Author notes
                [*] [* ] Correspondence

                Pipob Suwanchaikasem, School of BioSciences, University of Melbourne, Building 147, Melbourne, Victoria 3010, Australia.

                Email: psuwanchaika@ 123456student.unimelb.edu.au

                Author information
                https://orcid.org/0000-0001-7991-6414
                https://orcid.org/0000-0002-6425-972X
                https://orcid.org/0000-0003-3575-7292
                https://orcid.org/0000-0002-2064-4546
                https://orcid.org/0000-0001-6342-9814
                https://orcid.org/0000-0001-5995-7040
                Article
                PLD3528
                10.1002/pld3.528
                10485662
                37692128
                a32916fa-4930-42ac-83a6-9865787377df
                © 2023 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 August 2023
                : 09 June 2023
                : 11 August 2023
                Page count
                Figures: 9, Tables: 1, Pages: 22, Words: 15374
                Funding
                Funded by: Nutrifield Pty Ltd
                Funded by: SEED19 grant, School of BioSciences, University of Melbourne
                Funded by: Melbourne Research Scholarship
                Funded by: Gretna Weste Plant Pathology and Mycology Scholarship
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                September 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.3 mode:remove_FC converted:08.09.2023

                cell wall‐degrading enzymes,chitinase,exudate,peroxidase,plant defense,proteomics

                Comments

                Comment on this article