8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human adenovirus type 7 infection causes a more severe disease than type 3

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human adenovirus type 3 (HAdV-3) and 7 (HAdV-7) cause significant morbidity and develop severe complications and long-term pulmonary sequelae in children. However, epidemiologic reports have suggested that nearly all highly severe or fatal adenoviral diseases in children are associated with HAdV-7 rather than HAdV-3. Here, we conduct in-depth investigations to confirm and extend these findings through a comprehensive series of assays in vitro and in vivo as well as clinical correlates.

          Methods

          A total of 8248 nasopharyngeal aspirate (NPA) samples were collected from hospitalized children with acute respiratory infections in Children’s Hospital of Chongqing Medical University from June 2009 to May 2015. Among 289 samples that tested positive for HAdVs, clinical data of 258 cases of HAdV-3 (127) and HAdV-7 (131) infections were analyzed. All HAdV-positive samples were classified by sequencing the hexon and fiber genes, and compared with clinical data and virological assays. We also performed in vitro assays of virus quantification, viral growth kinetics, competitive fitness, cytotoxicity and C3a assay of the two strains. Mouse adenovirus model was used to evaluate acute inflammatory responses.

          Results

          Clinical characteristics revealed that HAdV-7 infection caused more severe pneumonia, toxic encephalopathy, respiratory failure, longer mean hospitalization, significantly lower white blood cell (WBC) and platelet counts, compared to those of HAdV-3. In cell culture, HAdV-7 replicated at a higher level than HAdV-3, and viral fitness showed significant differences as well. HAdV-7 also exhibited higher C3a production and cytotoxic effects, and HAdV-7-infected mice showed aggravated pathology and higher pulmonary virus loads, compared to HAdV-3-infected mice. Macrophages in BALF remained markedly high during infection, with concomitant increase in pro-inflammatory cytokines (TNF-α, IL-1β, IFN-γ, and IL-6), compared HAdV-3 infection.

          Conclusions

          These results document that HAdV-7 replicates more robustly than HAdV-3, and promotes an exacerbated cytokine response, causing a more severe airway inflammation. The findings merit further mechanistic studies that offer the pediatricians an informed decision to proceed with early diagnosis and treatment of HAdV-7 infection.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Complement. Second of two parts.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid and quantitative detection of human adenovirus DNA by real-time PCR.

            Rapid diagnosis of human adenovirus (HAdV) infections was achieved by PCR in the recent years. However, conventional PCR has the risk of carry-over contamination due to open handling with its products, and results are only qualitative. Therefore, a quantitative "real-time" PCR with consensus primer and probe (dual fluorescence labelled, "TaqMan") sequences for a conserved region of the hexon gene was designed and evaluated. Real-time PCR detected all 51 HAdV prototypes. Sensitivity of the assay was
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complement: a unique innate immune sensor for danger signals.

              The complement (C) inflammatory cascade is part of the phylogenetically ancient innate immune response and is crucial to our natural ability to ward off infection. It has three critical physiologic activities: (i) defending against microbial infections by triggering the generation of a membranolytic complex (C5b9 complex) at the surface of the pathogen and C fragments (named opsonins, i.e., C1q, C3b and iC3b) which interact with C cell surface receptors (CR1, CR3 and CR4) to promote phagocytosis. Soluble C anaphylatoxins (C4a, C3a and C5a) greatly control the local pro-inflammatory response through the chemotaxis and activation of leukocytes; (ii) bridging innate and adaptive immunity (essentially through C receptor type 2, CR2, expressed by B cells) and (iii) disposing of immune complexes and the products of the inflammatory injury (i.e., other danger signals, e.g., toxic cell debris and apoptotic corpses) to ensure the protection and healing of the host. The regulatory mechanisms of C are finely balanced so that, on the one hand, the deposition of C is focused on the surface of invading microorganisms and, on the other hand, the deposition of C on normal cells is limited by several key C inhibitors (e.g., CD46, CD55 and CD59). Knowledge of the unique molecular and cellular innate immunological interactions that occur in the development and resolution of pathology should facilitate the design of effective therapeutic strategies to fight selectively against intruders.
                Bookmark

                Author and article information

                Contributors
                15619157036@163.com
                857651862@qq.com
                303854601@qq.com
                morse1992@126.com
                xgtian@gzhmu.edu.cn
                sdjnnike@126.com
                renluo@yeah.net
                emliu186@hotmail.com
                +86 13228610087 , zangna1214@126.com
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                9 January 2019
                9 January 2019
                2019
                : 19
                : 36
                Affiliations
                [1 ]ISNI 0000 0000 8653 0555, GRID grid.203458.8, Department of Respiratory Medicine, , Children’s Hospital of Chongqing Medical University, ; Chongqing, 400014 China
                [2 ]Pediatric Research Institute of Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
                [3 ]State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180 China
                [4 ]GRID grid.494629.4, Institute of Biology, Westlake institute for Advanced Study, ; Hangzhou, 310024 Zhejiang China
                Article
                3651
                10.1186/s12879-018-3651-2
                6327436
                30626350
                517c43f3-11de-4878-b652-1f808161b404
                © The Author(s). 2019

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 August 2018
                : 21 December 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100010909, Young Scientists Fund;
                Award ID: 81301424
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Infectious disease & Microbiology
                disease severity,adenovirus,hadv-3,hadv-7
                Infectious disease & Microbiology
                disease severity, adenovirus, hadv-3, hadv-7

                Comments

                Comment on this article