96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic Misdiagnoses and the Potential for Health Disparities

      research-article
      , Ph.D., , Ph.D., , Ph.D., , Ph.D., , M.D., , Ph.D., , M.D., , M.D., Ph.D., , M.D., Ph.D.
      The New England journal of medicine

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          For more than a decade, risk stratification for hypertrophic cardiomyopathy has been enhanced by targeted genetic testing. Using sequencing results, clinicians routinely assess the risk of hypertrophic cardiomyopathy in a patient’s relatives and diagnose the condition in patients who have ambiguous clinical presentations. However, the benefits of genetic testing come with the risk that variants may be misclassified.

          METHODS

          Using publicly accessible exome data, we identified variants that have previously been considered causal in hypertrophic cardiomyopathy and that are overrepresented in the general population. We studied these variants in diverse populations and reevaluated their initial ascertainments in the medical literature. We reviewed patient records at a leading genetic-testing laboratory for occurrences of these variants during the near-decade-long history of the laboratory.

          RESULTS

          Multiple patients, all of whom were of African or unspecified ancestry, received positive reports, with variants misclassified as pathogenic on the basis of the understanding at the time of testing. Subsequently, all reported variants were recategorized as benign. The mutations that were most common in the general population were significantly more common among black Americans than among white Americans (P<0.001). Simulations showed that the inclusion of even small numbers of black Americans in control cohorts probably would have prevented these misclassifications. We identified methodologic shortcomings that contributed to these errors in the medical literature.

          CONCLUSIONS

          The misclassification of benign variants as pathogenic that we found in our study shows the need for sequencing the genomes of diverse populations, both in asymptomatic controls and the tested patient population. These results expand on current guidelines, which recommend the use of ancestry-matched controls to interpret variants. As additional populations of different ancestry backgrounds are sequenced, we expect variant reclassifications to increase, particularly for ancestry groups that have historically been less well studied. (Funded by the National Institutes of Health.)

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          R: A Language for Data Analysis and Graphics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews.

            Carriers of germ-line mutations in BRCA1 and BRCA2 from families at high risk for cancer have been estimated to have an 85 percent risk of breast cancer. Since the combined frequency of BRCA1 and BRCA2 mutations exceeds 2 percent among Ashkenazi Jews, we were able to estimate the risk of cancer in a large group of Jewish men and women from the Washington, D.C., area. We collected blood samples from 5318 Jewish subjects who had filled out epidemiologic questionnaires. Carriers of the 185delAG and 5382insC mutations in BRCA1 and the 6174delT mutation in BRCA2 were identified with assays based on the polymerase chain reaction. We estimated the risks of breast and other cancers by comparing the cancer histories of relatives of carriers of the mutations and noncarriers. One hundred twenty carriers of a BRCA1 or BRCA2 mutation were identified. By the age of 70, the estimated risk of breast cancer among carriers was 56 percent (95 percent confidence interval, 40 to 73 percent); of ovarian cancer, 16 percent (95 percent confidence interval, 6 to 28 percent); and of prostate cancer, 16 percent (95 percent confidence interval, 4 to 30 percent). There were no significant differences in the risk of breast cancer between carriers of BRCA1 mutations and carriers of BRCA2 mutations, and the incidence of colon cancer among the relatives of carriers was not elevated. Over 2 percent of Ashkenazi Jews carry mutations in BRCA1 or BRCA2 that confer increased risks of breast, ovarian, and prostate cancer. The risks of breast cancer may be overestimated, but they fall well below previous estimates based on subjects from high-risk families.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy.

              Hypertrophic cardiomyopathy is an autosomal-dominant disorder in which 10 genes and numerous mutations have been reported. The aim of the present study was to perform a systematic screening of these genes in a large population, to evaluate the distribution of the disease genes, and to determine the best molecular strategy in clinical practice. The entire coding sequences of 9 genes (MYH7, MYBPC3, TNNI3, TNNT2, MYL2, MYL3, TPM1, ACTC, andTNNC1) were analyzed in 197 unrelated index cases with familial or sporadic hypertrophic cardiomyopathy. Disease-causing mutations were identified in 124 index patients ( approximately 63%), and 97 different mutations, including 60 novel ones, were identified. The cardiac myosin-binding protein C (MYBPC3) and beta-myosin heavy chain (MYH7) genes accounted for 82% of families with identified mutations (42% and 40%, respectively). Distribution of the genes varied according to the prognosis (P=0.036). Moreover, a mutation was found in 15 of 25 index cases with "sporadic" hypertrophic cardiomyopathy (60%). Finally, 6 families had patients with more than one mutation, and phenotype analyses suggested a gene dose effect in these compound-heterozygous, double-heterozygous, or homozygous patients. These results might have implications for genetic diagnosis strategy and, subsequently, for genetic counseling. First, on the basis of this experience, the screening of already known mutations is not helpful. The analysis should start by testing MYBPC3 and MYH7 and then focus on TNNI3, TNNT2, and MYL2. Second, in particularly severe phenotypes, several mutations should be searched. Finally, sporadic cases can be successfully screened.
                Bookmark

                Author and article information

                Journal
                0255562
                5985
                N Engl J Med
                N. Engl. J. Med.
                The New England journal of medicine
                0028-4793
                1533-4406
                1 February 2017
                18 August 2016
                18 February 2017
                : 375
                : 7
                : 655-665
                Affiliations
                Departments of Biomedical Informatics (A.K.M., D.M.M., I.S.K.), Pathology (B.H.F.), and Medicine (B.A.M., J.L.), Harvard Medical School, the Departments of Pathology, Massachusetts General Hospital (B.H.F.), and the Department of Pathology (H.L.R.), Division of Cardiovascular Medicine (B.A.M.), and Department of Medicine (B.A.M., J.L.), Brigham and Women’s Hospital, Boston, and the Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology (MIT) (A.K.M., I.S.K.), the Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine (B.H.F., H.L.R.), and the Computer Science and Artificial Intelligence Laboratory, MIT (P.S.), Cambridge — all in Massachusetts; and the Laboratory of Molecular Cardiology, Department of Cardiology, the Heart Center, University Hospital of Copenhagen, Rigshospitalet, and the Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (M.S.O.) — both in Copenhagen
                Author notes
                Address reprint requests to Dr. Kohane at 10 Shattuck St., Boston, MA, 02115, or at isaac_kohane@ 123456harvard.edu
                Article
                PMC5292722 PMC5292722 5292722 nihpa817174
                10.1056/NEJMsa1507092
                5292722
                27532831
                7520bc40-eece-4f5e-85f7-96b96ac55bc7
                History
                Categories
                Article

                Comments

                Comment on this article