14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Taming multiparticle entanglement

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present an approach to characterize genuine multiparticle entanglement using appropriate approximations in the space of quantum states. This leads to a criterion for entanglement which can easily be calculated using semidefinite programming and improves all existing approaches significantly. Experimentally, it can also be evaluated when only some observables are measured. Furthermore, it results in a computable entanglement monotone for genuine multiparticle entanglement. Based on this, we develop an analytical approach for the entanglement detection in cluster states, leading to an exponential improvement compared with existing schemes.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A computable measure of entanglement

          , (2001)
          We present a measure of entanglement that can be computed effectively for any mixed state of an arbitrary bipartite system. We show that it does not increase under local manipulations of the system, and use it to obtain a bound on the teleportation capacity and on the distillable entanglement of mixed states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum-enhanced measurements: beating the standard quantum limit

            , , (2004)
            Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits to the precision of measurement. Conventional measurement techniques typically fail to reach these limits. Conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits, and can be beaten using quantum strategies that employ `quantum tricks' such as squeezing and entanglement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Measurement-based quantum computation

              Quantum computation offers a promising new kind of information processing, where the non-classical features of quantum mechanics can be harnessed and exploited. A number of models of quantum computation exist, including the now well-studied quantum circuit model. Although these models have been shown to be formally equivalent, their underlying elementary concepts and the requirements for their practical realization can differ significantly. The new paradigm of measurement-based quantum computation, where the processing of quantum information takes place by rounds of simple measurements on qubits prepared in a highly entangled state, is particularly exciting in this regard. In this article we discuss a number of recent developments in measurement-based quantum computation in both fundamental and practical issues, in particular regarding the power of quantum computation, the protection against noise (fault tolerance) and steps toward experimental realization. Moreover, we highlight a number of surprising connections between this field and other branches of physics and mathematics.
                Bookmark

                Author and article information

                Journal
                10.1103/PhysRevLett.106.190502
                1010.6049

                Quantum physics & Field theory
                Quantum physics & Field theory

                Comments

                Comment on this article