67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions.

      1
      Frontiers in neural circuits
      Frontiers Media SA
      Up state, cortex, sleep, slow oscillation, thalamus

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz), synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states) and almost complete silence (Down states). The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

          Related collections

          Most cited references215

          • Record: found
          • Abstract: found
          • Article: not found

          Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.

          Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal circuits of the neocortex.

            We explore the extent to which neocortical circuits generalize, i.e., to what extent can neocortical neurons and the circuits they form be considered as canonical? We find that, as has long been suspected by cortical neuroanatomists, the same basic laminar and tangential organization of the excitatory neurons of the neocortex is evident wherever it has been sought. Similarly, the inhibitory neurons show characteristic morphology and patterns of connections throughout the neocortex. We offer a simple model of cortical processing that is consistent with the major features of cortical circuits: The superficial layer neurons within local patches of cortex, and within areas, cooperate to explore all possible interpretations of different cortical input and cooperatively select an interpretation consistent with their various cortical and subcortical inputs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Rhythms of the Brain

                Bookmark

                Author and article information

                Journal
                Front Neural Circuits
                Frontiers in neural circuits
                Frontiers Media SA
                1662-5110
                1662-5110
                2015
                : 9
                Affiliations
                [1 ] Department of Neuroscience, Division of Biology and Medicine, Brown UniversityProvidence, RI, USA; Department of Neurobiology, Yale UniversityNew Haven, CT, USA.
                Article
                10.3389/fncir.2015.00088
                4712264
                26834569
                76fb64d6-ac89-4a87-8f61-da757208e3ad
                History

                Up state,cortex,sleep,slow oscillation,thalamus
                Up state, cortex, sleep, slow oscillation, thalamus

                Comments

                Comment on this article