4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Systematic Review of Extreme Phenotype Strategies to Search for Rare Variants in Genetic Studies of Complex Disorders

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exome sequencing has been commonly used to characterize rare diseases by selecting multiplex families or singletons with an extreme phenotype (EP) and searching for rare variants in coding regions. The EP strategy covers both extreme ends of a disease spectrum and it has been also used to investigate the contribution of rare variants to the heritability of complex clinical traits. We conducted a systematic review to find evidence supporting the use of EP strategies in the search for rare variants in genetic studies of complex diseases and highlight the contribution of rare variations to the genetic structure of polygenic conditions. After assessing the quality of the retrieved records, we selected 19 genetic studies considering EPs to demonstrate genetic association. All studies successfully identified several rare or de novo variants, and many novel candidate genes were also identified by selecting an EP. There is enough evidence to support that the EP approach for patients with an early onset of a disease can contribute to the identification of rare variants in candidate genes or pathways involved in complex diseases. EP patients may contribute to a better understanding of the underlying genetic architecture of common heterogeneous disorders such as tinnitus or age-related hearing loss.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials

          Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement

            Systematic reviews should build on a protocol that describes the rationale, hypothesis, and planned methods of the review; few reviews report whether a protocol exists. Detailed, well-described protocols can facilitate the understanding and appraisal of the review methods, as well as the detection of modifications to methods and selective reporting in completed reviews. We describe the development of a reporting guideline, the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 (PRISMA-P 2015). PRISMA-P consists of a 17-item checklist intended to facilitate the preparation and reporting of a robust protocol for the systematic review. Funders and those commissioning reviews might consider mandating the use of the checklist to facilitate the submission of relevant protocol information in funding applications. Similarly, peer reviewers and editors can use the guidance to gauge the completeness and transparency of a systematic review protocol submitted for publication in a journal or other medium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Finding the missing heritability of complex diseases.

              Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                25 August 2020
                September 2020
                : 11
                : 9
                : 987
                Affiliations
                [1 ]Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO—Centre for Genomics and Oncological Research—Pfizer/University of Granada/Junta de Andalucía, PTS, 18016 Granada, Spain; sana.amanat@ 123456genyo.es
                [2 ]Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK; mrequena@ 123456ed.ac.uk
                [3 ]Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18016 Granada, Spain
                [4 ]Department of Surgery, Division of Otolaryngology, Universidad de Granada, 18016 Granada, Spain
                Author notes
                [* ]Correspondence: antonio.lopezescamez@ 123456genyo.es ; Tel.: +34-958-715-500-160
                Author information
                https://orcid.org/0000-0002-1211-6890
                https://orcid.org/0000-0001-8355-6028
                https://orcid.org/0000-0002-8583-1430
                Article
                genes-11-00987
                10.3390/genes11090987
                7564972
                32854191
                913166ff-df16-4ff3-9148-6385e39eacca
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 July 2020
                : 19 August 2020
                Categories
                Review

                genetic epidemiology,genetic association studies,extreme phenotype,exome sequencing,tinnitus

                Comments

                Comment on this article