4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Arbuscular mycorrhizae maintain lemongrass citral levels and mitigate resistance despite root lesion nematode infection

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The plant immune system.

            Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological effects of essential oils--a review.

              Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, medicinal and cosmetic applications, especially nowadays in pharmaceutical, sanitary, cosmetic, agricultural and food industries. Because of the mode of extraction, mostly by distillation from aromatic plants, they contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components. In vitro physicochemical assays characterise most of them as antioxidants. However, recent work shows that in eukaryotic cells, essential oils can act as prooxidants affecting inner cell membranes and organelles such as mitochondria. Depending on type and concentration, they exhibit cytotoxic effects on living cells but are usually non-genotoxic. In some cases, changes in intracellular redox potential and mitochondrial dysfunction induced by essential oils can be associated with their capacity to exert antigenotoxic effects. These findings suggest that, at least in part, the encountered beneficial effects of essential oils are due to prooxidant effects on the cellular level.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Rhizosphere
                Rhizosphere
                Elsevier BV
                24522198
                September 2021
                September 2021
                : 19
                : 100359
                Article
                10.1016/j.rhisph.2021.100359
                a60ca0d5-4bd2-463a-a97e-887879aa81d0
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article