10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1β maturation and IFN-β promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1β and IFN-β compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1β production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1β production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1β and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.

          Author summary

          African swine fever virus (ASFV) causes a highly lethal swine disease that is currently present in many countries, severely affecting the pig industry. Despite extensive research, effective vaccines and antiviral strategies are still lacking and relevant gaps in knowledge of the fundamental biology of the viral infection cycle exist. In this study, we found that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs) and identified that pMGF505-7R, a member of the multigene family 505 (MGF505), strongly inhibited IL-1β and IFN-β production. ASFV lacking the MGF505-7R gene (ASFV-Δ7R) had reduced virulence in piglets and induced increased IL-1β and IFN-β production in PAMs and pigs compared with its parental ASFV HLJ/18 strain. Our results significantly increase our knowledge to understand functions of ASFV-encoded pMGF505-7R and its roles in pathogenesis, which may shed light on future research on live attenuated vaccines and antiviral strategies.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

          Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pattern recognition receptors and inflammation.

            Infection of cells by microorganisms activates the inflammatory response. The initial sensing of infection is mediated by innate pattern recognition receptors (PRRs), which include Toll-like receptors, RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors. The intracellular signaling cascades triggered by these PRRs lead to transcriptional expression of inflammatory mediators that coordinate the elimination of pathogens and infected cells. However, aberrant activation of this system leads to immunodeficiency, septic shock, or induction of autoimmunity. In this Review, we discuss the role of PRRs, their signaling pathways, and how they control inflammatory responses. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping and quantifying mammalian transcriptomes by RNA-Seq.

              We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3' untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 x 10(5) distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: Resources
                Role: InvestigationRole: MethodologyRole: ResourcesRole: Validation
                Role: InvestigationRole: MethodologyRole: Resources
                Role: Writing – review & editing
                Role: Validation
                Role: Validation
                Role: Methodology
                Role: Methodology
                Role: Resources
                Role: ConceptualizationRole: Formal analysisRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                26 July 2021
                July 2021
                : 17
                : 7
                : e1009733
                Affiliations
                [001]Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
                Institute for Animal Health, Pirbright Laboratory, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-0427-6405
                https://orcid.org/0000-0001-7161-6214
                https://orcid.org/0000-0002-7676-9030
                Article
                PPATHOGENS-D-21-00026
                10.1371/journal.ppat.1009733
                8341718
                34310655
                36772816-b532-4ec0-af9c-0a7e48a6d7a0
                © 2021 Li et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 January 2021
                : 21 June 2021
                Page count
                Figures: 11, Tables: 0, Pages: 30
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31941002
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001809, national natural science foundation of china;
                Award ID: 31872448
                Award Recipient :
                Funded by: State Key Laboratory of Veterinary Biotechnological Foundation
                Award ID: SKLVBP2018002
                Award Recipient :
                Funded by: Major Scientific Research project of Chinese Academy of Agricultural Sciences
                Award ID: CAAS-ZDXT2018007
                Award Recipient :
                Funded by: Natural Science Foundation of Heilongjiang Province of China
                Award ID: YQ2019C033
                Award Recipient :
                This study was supported by National Natural Science Foundation of China (31941002) (CW), National Natural Science Foundation of China (31872448) (JL), the State Key Laboratory of Veterinary Biotechnological Foundation (SKLVBP2018002) (JL), Major Scientific Research project of Chinese Academy of Agricultural Sciences (CAAS-ZDXT2018007) (CW), Natural Science Foundation of Heilongjiang Province of China (YQ2019C033) (JL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Swine
                Biology and Life Sciences
                Zoology
                Animals
                Vertebrates
                Amniotes
                Mammals
                Swine
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Inflammasomes
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Inflammasomes
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Inflammasomes
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Transfection
                Research and Analysis Methods
                Molecular Biology Techniques
                Transfection
                Biology and Life Sciences
                Biochemistry
                Proteins
                Interferons
                Research and Analysis Methods
                Precipitation Techniques
                Immunoprecipitation
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Inflammation
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Cell Signaling
                Signal Inhibition
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small interfering RNA
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small interfering RNA
                Custom metadata
                vor-update-to-uncorrected-proof
                2021-08-05
                All relevant data are within the manuscript and its Supporting information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article