23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relevance of Rodent Models of Depression in Clinical Practice: Can We Overcome the Obstacles in Translational Neuropsychiatry?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The diagnosis of a mental disorder generally depends on clinical observations and phenomenological symptoms reported by the patient. The definition of a given diagnosis is criteria based and relies on the ability to accurately interpret subjective symptoms and complex behavior. This type of diagnosis comprises a challenge to translate to reliable animal models, and these translational uncertainties hamper the development of new treatments. In this review, we will discuss how depressive-like behavior can be induced in rodents, and the relationship between these models and depression in humans. Specifically, we suggest similarities between triggers of depressive-like behavior in animal models and human conditions known to increase the risk of depression, for example exhaustion and bullying. Although we acknowledge the potential problems in comparing animal findings to human conditions, such comparisons are useful for understanding the complexity of depression, and we highlight the need to develop clinical diagnoses and animal models in parallel to overcome translational uncertainties.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          Depression: a new animal model sensitive to antidepressant treatments.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amygdala circuitry mediating reversible and bidirectional control of anxiety.

            Anxiety--a sustained state of heightened apprehension in the absence of immediate threat--becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)--achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA--exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA-CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice.

              Since its introduction almost 20 years ago, the tail suspension test has become one of the most widely used models for assessing antidepressant-like activity in mice. The test is based on the fact that animals subjected to the short-term, inescapable stress of being suspended by their tail, will develop an immobile posture. Various antidepressant medications reverse the immobility and promote the occurrence of escape-related behaviour. This review focuses on the utility this test as part of a research program aimed at understanding the mechanism of action of antidepressants. We discuss the inherent difficulties in modeling depression in rodents. We describe how the tail suspension differs from the closely related forced swim test. Further, we address some key issues associated with using the TST as a model of antidepressant action. We discuss issues regarding whether it satisfies criteria to be a valid model for assessing depression-related behavioural traits. We elaborate on the tests' ease of use, strain differences observed in the test and gender effects in the test. We focus on the utility of the test for genetic analysis. Furthermore, we discuss the concept of whether immobility maybe a behavioural trait relevant to depression. All of the available pharmacological data using the test in genetically modified mice is collated. Special attention is given to selective breeding programs such as the Rouen 'depressed' mice which have been bred for high and low immobility in the tail suspension test. We provide an extensive pooling of the pharmacological studies published to date using the test. Finally, we provide novel pharmacological validation of an automated system (Bioseb) for assessing immobility. Taken together, we conclude that the tail suspension test is a useful test for assessing the behavioural effects of antidepressant compounds and other pharmacological and genetic manipulations relevant to depression.
                Bookmark

                Author and article information

                Journal
                Int J Neuropsychopharmacol
                Int. J. Neuropsychopharmacol
                ijnp
                International Journal of Neuropsychopharmacology
                Oxford University Press (US )
                1461-1457
                1469-5111
                July 2018
                23 April 2018
                23 April 2018
                : 21
                : 7
                : 668-676
                Affiliations
                [1 ]Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
                [2 ]Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
                Author notes
                Correspondence: Maria Lindskog, PhD, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum 14186 Stockholm, Sweden ( mia.lindskog@ 123456ki.se ).
                Author information
                http://orcid.org/0000-0002-4178-2825
                Article
                pyy037
                10.1093/ijnp/pyy037
                6030948
                29688411
                fffff726-a154-4725-894e-56684e5740e4
                © The Author(s) 2018. Published by Oxford University Press on behalf of CINP.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 31 May 2017
                : 13 April 2018
                : 22 February 2018
                Page count
                Pages: 9
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                rdoc,stress,resilience,vulnerability
                Pharmacology & Pharmaceutical medicine
                rdoc, stress, resilience, vulnerability

                Comments

                Comment on this article