93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomechanical spinal growth modulation and progressive adolescent scoliosis – a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE

      review-article
      1 , 2 , , 3
      Scoliosis
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The text for this debate was written by Dr Ian A Stokes. It evaluates the hypothesis that in progressive scoliosis vertebral body wedging during adolescent growth results from asymmetric muscular loading in a "vicious cycle" ( vicious cycle hypothesis of pathogenesis) by affecting vertebral body growth plates (endplate physes). A frontal plane mathematical simulation tested whether the calculated loading asymmetry created by muscles in a scoliotic spine could explain the observed rate of scoliosis increase by measuring the vertebral growth modulation by altered compression. The model deals only with vertebral (not disc) wedging. It assumes that a pre-existing scoliosis curve initiates the mechanically-modulated alteration of vertebral body growth that in turn causes worsening of the scoliosis, while everything else is anatomically and physiologically 'normal' The results provide quantitative data consistent with the vicious cycle hypothesis. Dr Stokes' biomechanical research engenders controversy. A new speculative concept is proposed of vertebral symphyseal dysplasia with implications for Dr Stokes' research and the etiology of AIS. What is not controversial is the need to test this hypothesis using additional factors in his current model and in three-dimensional quantitative models that incorporate intervertebral discs and simulate thoracic as well as lumbar scoliosis. The growth modulation process in the vertebral body can be viewed as one type of the biologic phenomenon of mechanotransduction. In certain connective tissues this involves the effects of mechanical strain on chondrocytic metabolism a possible target for novel therapeutic intervention.

          Related collections

          Most cited references206

          • Record: found
          • Abstract: found
          • Article: not found

          Tensegrity: the architectural basis of cellular mechanotransduction.

          D. Ingber (1997)
          Physical forces of gravity, hemodynamic stresses, and movement play a critical role in tissue development. Yet, little is known about how cells convert these mechanical signals into a chemical response. This review attempts to place the potential molecular mediators of mechanotransduction (e.g. stretch-sensitive ion channels, signaling molecules, cytoskeleton, integrins) within the context of the structural complexity of living cells. The model presented relies on recent experimental findings, which suggests that cells use tensegrity architecture for their organization. Tensegrity predicts that cells are hard-wired to respond immediately to mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix (e.g. integrins) or to other cells (cadherins, selectins, CAMs). Many signal transducing molecules that are activated by cell binding to growth factors and extracellular matrix associate with cytoskeletal scaffolds within focal adhesion complexes. Mechanical signals, therefore, may be integrated with other environmental signals and transduced into a biochemical response through force-dependent changes in scaffold geometry or molecular mechanics. Tensegrity also provides a mechanism to focus mechanical energy on molecular transducers and to orchestrate and tune the cellular response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A possible unifying principle for mechanosensation.

            Ching Kung (2005)
            Of Aristotle's five senses, we know that sight, smell and much of taste are initiated by ligands binding to G-protein-coupled receptors; however, the mechanical sensations of touch and hearing remain without a clear understanding of their molecular basis. Recently, the relevant force-transducing molecules--the mechanosensitive ion channels--have been identified. Such channel proteins purified from bacteria sense forces from the lipid bilayer in the absence of other proteins. Recent evidence has shown that lipids are also intimately involved in opening and closing the mechanosensitive channels of fungal, plant and animal species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cartilage tissue remodeling in response to mechanical forces.

              Recent studies suggest that there are multiple regulatory pathways by which chondrocytes in articular cartilage sense and respond to mechanical stimuli, including upstream signaling pathways and mechanisms that may lead to direct changes at the level of transcription, translation, post-translational modifications, and cell-mediated extracellular assembly and degradation of the tissue matrix. This review focuses on the effects of mechanical loading on cartilage and the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and repair of this tissue. The effects of compression and tissue shear deformation are compared, and approaches to the study of mechanical regulation of gene expression are described. Of particular interest regarding dense connective tissues, recent experiments have shown that mechanotransduction is critically important in vivo in the cell-mediated feedback between physical stimuli, the molecular structure of newly synthesized matrix molecules, and the resulting macroscopic biomechanical properties of the tissue.
                Bookmark

                Author and article information

                Journal
                Scoliosis
                Scoliosis
                BioMed Central (London )
                1748-7161
                2006
                18 October 2006
                : 1
                : 16
                Affiliations
                [1 ]Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, Vermont 05405, USA
                [2 ]The Centre for Spinal Studies & Surgery, Queen's Medical Centre, Nottingham, NG7 2UH, UK
                [3 ]Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK
                Article
                1748-7161-1-16
                10.1186/1748-7161-1-16
                1626075
                17049077
                ff65b6a7-4358-4d6b-87ce-c972ab240cb9
                Copyright © 2006 Stokes et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 August 2006
                : 18 October 2006
                Categories
                Review

                Orthopedics
                Orthopedics

                Comments

                Comment on this article