22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction.

      Neuroscience
      Animals, Calcium-Binding Proteins, metabolism, Cell Count, methods, Glutamate Decarboxylase, Male, Nerve Tissue Proteins, Neurons, Prefrontal Cortex, cytology, Rats, Rats, Sprague-Dawley, Receptor, Serotonin, 5-HT2C, gamma-Aminobutyric Acid

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Serotonin (5-HT) action via the 5-HT(2C) receptor (5-HT(2C)R) provides an important modulatory influence over neurons of the prefrontal cortex (PFC), which is critically involved in disorders of executive function including substance use disorders. In the present study, we investigated the distribution of the 5-HT(2C)R in the rat prelimbic prefrontal cortex (PrL), a subregion of the medial prefrontal cortex (mPFC), using a polyclonal antibody raised against the 5-HT(2C)R. The expression of 5-HT(2C)R immunoreactivity (IR) was highest in the deep layers (layers V/VI) of the mPFC. The 5-HT(2C)R-IR was typically most intense at the periphery of cell bodies and the initial segment of cell processes. Approximately 50% of the 5-HT(2C)R-IR detected was found in glutamate decarboxylase, isoform 67 (GAD 67)-positive neurons. Of the subtypes of GABA interneurons identified by expression of several calcium-binding proteins, a significantly higher percentage of neurons expressing IR for parvalbumin also expressed 5-HT(2C)R-IR than did the percentage of neurons expressing calbindin-IR or calretinin-IR that also expressed 5-HT(2C)R-IR. Since parvalbumin is located in basket and chandelier GABA interneurons which project to cell body and initial axon segments of pyramidal cells, respectively, these results raise the possibility that the 5-HT(2C)R in the mPFC acts via the parvalbumin-positive GABAergic interneurons to regulate the output of pyramidal cells in the rat mPFC.

          Related collections

          Author and article information

          Comments

          Comment on this article