195
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Architecture of the RNA polymerase–Spt4/5 complex and basis of universal transcription processivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP-associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N-terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C-terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          The integration of macromolecular diffraction data.

          The objective of any modern data-processing program is to produce from a set of diffraction images a set of indices (hkls) with their associated intensities (and estimates of their uncertainties), together with an accurate estimate of the crystal unit-cell parameters. This procedure should not only be reliable, but should involve an absolute minimum of user intervention. The process can be conveniently divided into three stages. The first (autoindexing) determines the unit-cell parameters and the orientation of the crystal. The unit-cell parameters may indicate the likely Laue group of the crystal. The second step is to refine the initial estimate of the unit-cell parameters and also the crystal mosaicity using a procedure known as post-refinement. The third step is to integrate the images, which consists of predicting the positions of the Bragg reflections on each image and obtaining an estimate of the intensity of each reflection and its uncertainty. This is carried out while simultaneously refining various detector and crystal parameters. Basic features of the algorithms employed for each of these three separate steps are described, principally with reference to the program MOSFLM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.

            Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.

              In bacteria, the binding of a single protein, the initiation factor sigma, to a multi-subunit RNA polymerase core enzyme results in the formation of a holoenzyme, the active form of RNA polymerase essential for transcription initiation. Here we report the crystal structure of a bacterial RNA polymerase holoenzyme from Thermus thermophilus at 2.6 A resolution. In the structure, two amino-terminal domains of the sigma subunit form a V-shaped structure near the opening of the upstream DNA-binding channel of the active site cleft. The carboxy-terminal domain of sigma is near the outlet of the RNA-exit channel, about 57 A from the N-terminal domains. The extended linker domain forms a hairpin protruding into the active site cleft, then stretching through the RNA-exit channel to connect the N- and C-terminal domains. The holoenzyme structure provides insight into the structural organization of transcription intermediate complexes and into the mechanism of transcription initiation.
                Bookmark

                Author and article information

                Journal
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                06 April 2011
                08 March 2011
                08 March 2011
                : 30
                : 7
                : 1302-1310
                Affiliations
                [1 ]simpleGene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München , Munich, Germany
                Author notes
                [a ]Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich 81377, Germany. Tel.: +49 89 2180 76965; Fax: +49 89 2180 76998; E-mail: cramer@ 123456lmb.uni-muenchen.de
                Article
                emboj201164
                10.1038/emboj.2011.64
                3094117
                21386817
                fece5f41-40dd-455e-bea3-233359ba2a5d
                Copyright © 2011, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 04 February 2011
                : 17 February 2011
                Categories
                Article

                Molecular biology
                rna polymerase elongation,gene regulation,gene transcription,multiprotein complex structure,transcription elongation factor

                Comments

                Comment on this article