47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genotype- and Sex-Specific QT-RR Relationship in the Type-1 Long-QT Syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Genotype-phenotype investigations have revealed significantly larger risk for cardiac events in patients with type 1 long-QT syndrome (LQT-1), particularly in adult females, with missense mutation in the cytoplasmic loop (C-loop) regions of the α subunit of the KCNQ1 gene associated with an impaired ion channel activation by adrenergic stimulus. We hypothesize that the impaired response to increases in heart rate leads to abnormal QT-RR dynamic profiles and is responsible for the increased cardiac risk for these patients.

          Methods and Results

          We measured the QT-RR slope in 24-hour Holter ECGs from LQT-1 patients with the mutations associated with impaired adrenergic stimulus (C-loop, n=18) and compared to LQT-1 patients with other mutations (non–C-loop, n=48), and to a healthy control group (n=195). The diurnal QT-RR slope was less steep in C-loop mutation patients (0.10±0.05) than in the ECGs from non–C-loop mutation patients (0.17±0.09, P=0.002). For female patients, slower heart rates were associated with prolonged QT and increased QT-RR slope. Male patients with C-loop mutations showed an impaired repolarization for shorter range of heart rates than in females, which is consistent with gender differences in triggers for events in this syndrome.

          Conclusions

          Our observations suggest that the C-loop LQT-1 patients have specific impaired adrenergic regulation of the ventricular repolarization. This response to heart rate increases may be useful in identification of high-risk patients with inherited prolonged QT and may help select an optimal antiarrhythmic therapeutic strategy. ( J Am Heart Assoc. 2012;1:e000570 doi: 10.1161/JAHA.112.000570.)

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias.

          The congenital long-QT syndrome (LQTS) is caused by mutations on several genes, all of which encode cardiac ion channels. The progressive understanding of the electrophysiological consequences of these mutations opens unforeseen possibilities for genotype-phenotype correlation studies. Preliminary observations suggested that the conditions ("triggers") associated with cardiac events may in large part be gene specific. We identified 670 LQTS patients of known genotype (LQT1, n=371; LQT2, n=234; LQT3, n=65) who had symptoms (syncope, cardiac arrest, sudden death) and examined whether 3 specific triggers (exercise, emotion, and sleep/rest without arousal) differed according to genotype. LQT1 patients experienced the majority of their events (62%) during exercise, and only 3% occurred during rest/sleep. These percentages were almost reversed among LQT2 and LQT3 patients, who were less likely to have events during exercise (13%) and more likely to have events during rest/sleep (29% and 39%). Lethal and nonlethal events followed the same pattern. Corrected QT interval did not differ among LQT1, LQT2, and LQT3 patients (498, 497, and 506 ms, respectively). The percent of patients who were free of recurrence with ss-blocker therapy was higher and the death rate was lower among LQT1 patients (81% and 4%, respectively) than among LQT2 (59% and 4%, respectively) and LQT3 (50% and 17%, respectively) patients. Life-threatening arrhythmias in LQTS patients tend to occur under specific circumstances in a gene-specific manner. These data allow new insights into the mechanisms that relate the electrophysiological consequences of mutations on specific genes to clinical manifestations and offer the possibility of complementing traditional therapy with gene-specific approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene.

            Type-1 long-QT syndrome (LQTS) is caused by loss-of-function mutations in the KCNQ1-encoded I(Ks) cardiac potassium channel. We evaluated the effect of location, coding type, and biophysical function of KCNQ1 mutations on the clinical phenotype of this disorder. We investigated the clinical course in 600 patients with 77 different KCNQ1 mutations in 101 proband-identified families derived from the US portion of the International LQTS Registry (n=425), the Netherlands' LQTS Registry (n=93), and the Japanese LQTS Registry (n=82). The Cox proportional hazards survivorship model was used to evaluate the independent contribution of clinical and genetic factors to the first occurrence of time-dependent cardiac events from birth through age 40 years. The clinical characteristics, distribution of mutations, and overall outcome event rates were similar in patients enrolled from the 3 geographic regions. Biophysical function of the mutations was categorized according to dominant-negative (> 50%) or haploinsufficiency (< or = 50%) reduction in cardiac repolarizing I(Ks) potassium channel current. Patients with transmembrane versus C-terminus mutations (hazard ratio, 2.06; P<0.001) and those with mutations having dominant-negative versus haploinsufficiency ion channel effects (hazard ratio, 2.26; P<0.001) were at increased risk for cardiac events, and these genetic risks were independent of traditional clinical risk factors. This genotype-phenotype study indicates that in type-1 LQTS, mutations located in the transmembrane portion of the ion channel protein and the degree of ion channel dysfunction caused by the mutations are important independent risk factors influencing the clinical course of this disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals.

              This study was designed to assess the clinical course and to identify risk factors for life-threatening events in patients with long-QT syndrome (LQTS) with normal corrected QT (QTc) intervals. Current data regarding the outcome of patients with concealed LQTS are limited. Clinical and genetic risk factors for aborted cardiac arrest (ACA) or sudden cardiac death (SCD) from birth through age 40 years were examined in 3,386 genotyped subjects from 7 multinational LQTS registries, categorized as LQTS with normal-range QTc (≤ 440 ms [n = 469]), LQTS with prolonged QTc interval (> 440 ms [n = 1,392]), and unaffected family members (genotyped negative with ≤ 440 ms [n = 1,525]). The cumulative probability of ACA or SCD in patients with LQTS with normal-range QTc intervals (4%) was significantly lower than in those with prolonged QTc intervals (15%) (p 13 years, hazard ratio: 1.90; p = 0.002; QTc duration, 8% risk increase per 10-ms increment; p = 0.002). Genotype-confirmed patients with concealed LQTS make up about 25% of the at-risk LQTS population. Genetic data, including information regarding mutation characteristics and the LQTS genotype, identify increased risk for ACA or SCD in this overall lower risk LQTS subgroup. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd
                2047-9980
                April 2012
                24 April 2012
                : 1
                : 2
                : e000570
                Affiliations
                Center for Quantitative Electrocardiography and Cardiac Safety, Heart Research Follow-Up Program, University of Rochester Medical Center, NY (J.-P.C., X.X., A.J.M., W.Z.)
                Aab Cardiovascular Research Institute Department of Medicine, University of Rochester School of Medicine & Dentistry, NY (C.M.L.)
                INSERM-UMPC, Paris, France (I.D.)
                Hospital Bichat, Paris, France (I.D., F.E., P.M.-B.)
                Author notes
                Correspondence to: Jean-Philippe Couderc, PhD, Heart Research Follow-up Program, University of Rochester Medical Center, 265 Crittenden Blvd, Rochester, NY 14642-0653. E-mail jean-philippe.couderc@ 123456thew-project.org
                Article
                jah321
                10.1161/JAHA.112.000570
                3487370
                23130128
                fe970839-4480-4d95-8492-165458ceca90
                © 2012 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell.

                This is an Open Access article under the terms of the Creative Commons Attribution Noncommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 05 January 2012
                : 21 March 2012
                Categories
                Original Research
                Arrhythmia and Electrophysiology

                Cardiovascular Medicine
                electrocardiogram,long-qt syndrome,kcnq1,qt-rr dynamicity,qt interval
                Cardiovascular Medicine
                electrocardiogram, long-qt syndrome, kcnq1, qt-rr dynamicity, qt interval

                Comments

                Comment on this article