8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wound Chronicity, Impaired Immunity and Infection in Diabetic Patients

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract BACKGROUND Diabetic foot ulcers are a common diabetic complication leading to alarming figures of amputation, disability, and early mortality. The diabetic glucooxidative environment impairs the healing response, promoting the onset of a ‘wound chronicity phenotype’. In 50% of ulcers, these non-healing wounds act as an open door for developing infections, a process facilitated by diabetic patients’ dysimmunity. Infection can elicit biofilm formation that worsens wound prognosis. How this microorganism community is able to take advantage of underlying diabetic conditions and thrive both within the wound and the diabetic host is an expanding research field. OBJECTIVES 1) Offer an overview of the major cellular and molecular derangements of the diabetic healing process versus physiological cascades in a non-diabetic host. 2) Describe the main immunopathological aspects of diabetics’ immune response and explore how these contribute to wound infection susceptibility. 3) Conceptualize infection and biofilim in diabetic foot ulcers and analyze their dynamic interactions with wound bed cells and matrices, and their systemic effects at the organism level. 4) Offer an integrative conceptual framework of wound–dysimmunity–infection–organism damage. EVIDENCE AQUISITION We retrieved 683 articles indexed in Medline/PubMed, SciELO, Bioline International and Google Scholar. 280 articles were selected for discussion under four major subheadings: 1) normal healing processes, 2) impaired healing processes in the diabetic population, 3) diabetic dysimmunity and 4) diabetic foot infection and its interaction with the host. DEVELOPMENT The diabetic healing response is heterogeneous, torpid and asynchronous, leading to wound chronicity. The accumulation of senescent cells and a protracted inflammatory profile with a pro-catabolic balance hinder the proliferative response and delay re-epithelialization. Diabetes reduces the immune system’s abilities to orchestrate an appropriate antimicrobial response and offers ideal conditions for microbiota establishment and biofilm formation. Biofilm–microbial entrenchment hinders antimicrobial therapy effectiveness, amplifies the host's pre-existing immunodepression, arrests the wound’s proliferative phase, increases localized catabolism, prolongs pathogenic inflammation and perpetuates wound chronicity. In such circumstances the infected wound may act as a proinflammatory and pro-oxidant organ superimposed onto the host, which eventually intensifies peripheral insulin resistance and disrupts homeostasis. CONCLUSIONS The number of lower-limb amputations remains high worldwide despite continued research efforts on diabetic foot ulcers. Identifying and manipulating the molecular drivers underlying diabetic wound healing failure, and dysimmunity-driven susceptibility to infection will offer more effective therapeutic tools for the diabetic population.

          Related collections

          Most cited references273

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophil extracellular traps kill bacteria.

          Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two examples of acute inflammation. NETs appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Diabetic Foot Ulcers and Their Recurrence.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wound Healing: A Cellular Perspective

              Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
                Bookmark

                Author and article information

                Journal
                medicc
                MEDICC Review
                MEDICC rev.
                Medical Education Cooperation with Cuba (Oakland, California, United States )
                1555-7960
                1527-3172
                March 2022
                : 24
                : 1
                : 44-58
                Affiliations
                [7] orgnameGenetic Engineering and Biotechnology Center (CIGB) Cuba
                [6] orgnameKeck School of Medicine, University of Southern California Estados Unidos
                [2] orgnameGenetic Engineering and Biotechnology Center (CIGB) Cuba
                [4] orgnameGenetic Engineering and Biotechnology Center (CIGB) Cuba
                [3] orgnameGenetic Engineering and Biotechnology Center (CIGB) Cuba
                [5] orgnameGenetic Engineering and Biotechnology Center (CIGB) Cuba
                [1] orgnameGenetic Engineering and Biotechnology Center (CIGB) Cuba
                Article
                S1555-79602022000100044 S1555-7960(22)02400100044
                10.37757/mr2021.v23.n3.8
                34653116
                fe7a9939-4d35-4721-ab25-d397a0e08aeb

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 30 July 2021
                : 03 March 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 276, Pages: 15
                Product

                SciELO Public Health

                Categories
                Review Article

                amputation,Diabetic foot,infections,biofilms,microbiota
                amputation, Diabetic foot, infections, biofilms, microbiota

                Comments

                Comment on this article