32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs) that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV) to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome) and examine the changes during rhinovirus (RV) infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood.

          Methods

          Nasal airway secretions were obtained from children (≤3 yrs. old) during PCR-confirmed RV infections (n = 10) and age-matched controls (n = 10). Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC) differentiated at air-liquid interface (ALI). Bioinformatics tools were used to determine the unified (nasal and bronchial) signature airway secretory miRNAome and changes during RV infection in children.

          Results

          Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV.

          Conclusions

          Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway secretion of EVs containing miR-155, which is predicted in silico to regulate antiviral immunity. Further characterization of the airway secretory microRNAome during health and disease may lead to completely new strategies to treat and monitor respiratory conditions in all ages.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children.

          Virus-induced wheezing episodes in infancy often precede the development of asthma. Whether infections with specific viral pathogens confer differential future asthma risk is incompletely understood. To define the relationship between specific viral illnesses and early childhood asthma development. A total of 259 children were followed prospectively from birth to 6 years of age. The etiology and timing of specific viral wheezing respiratory illnesses during early childhood were assessed using nasal lavage, culture, and multiplex reverse transcriptase-polymerase chain reaction. The relationships of these virus-specific wheezing illnesses and other risk factors to the development of asthma were analyzed. Viral etiologies were identified in 90% of wheezing illnesses. From birth to age 3 years, wheezing with respiratory syncytial virus (RSV) (odds ratio [OR], 2.6), rhinovirus (RV) (OR, 9.8), or both RV and RSV (OR , 10) was associated with increased asthma risk at age 6 years. In Year 1, both RV wheezing (OR, 2.8) and aeroallergen sensitization (OR, 3.6) independently increased asthma risk at age 6 years. By age 3 years, wheezing with RV (OR, 25.6) was more strongly associated with asthma at age 6 years than aeroallergen sensitization (OR, 3.4). Nearly 90% (26 of 30) of children who wheezed with RV in Year 3 had asthma at 6 years of age. Among outpatient viral wheezing illnesses in infancy and early childhood, those caused by RV infections are the most significant predictors of the subsequent development of asthma at age 6 years in a high-risk birth cohort.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus

            Rhinoviruses are the major trigger of acute asthma exacerbations and asthmatic subjects are more susceptible to these infections. To investigate the underlying mechanisms of this increased susceptibility, we examined virus replication and innate responses to rhinovirus (RV)-16 infection of primary bronchial epithelial cells from asthmatic and healthy control subjects. Viral RNA expression and late virus release into supernatant was increased 50- and 7-fold, respectively in asthmatic cells compared with healthy controls. Virus infection induced late cell lysis in asthmatic cells but not in normal cells. Examination of the early cellular response to infection revealed impairment of virus induced caspase 3/7 activity and of apoptotic responses in the asthmatic cultures. Inhibition of apoptosis in normal cultures resulted in enhanced viral yield, comparable to that seen in infected asthmatic cultures. Examination of early innate immune responses revealed profound impairment of virus-induced interferon-β mRNA expression in asthmatic cultures and they produced >2.5 times less interferon-β protein. In infected asthmatic cells, exogenous interferon-β induced apoptosis and reduced virus replication, demonstrating a causal link between deficient interferon-β, impaired apoptosis and increased virus replication. These data suggest a novel use for type I interferons in the treatment or prevention of virus-induced asthma exacerbations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21.

              The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 September 2016
                2016
                : 11
                : 9
                : e0162244
                Affiliations
                [1 ]Division of Pediatric Allergy Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
                [2 ]Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
                [3 ]Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
                [4 ]Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
                [5 ]Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
                [6 ]Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
                [7 ]Division of Pediatric Pulmonology, University of Kentucky, Lexington, Kentucky, United States of America
                [8 ]Division of Pediatric Otolaryngology-Head and Neck Surgery, Children’s National Medical Center, Washington, DC, United States of America
                [9 ]Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, United States of America
                Telethon Institute for Child Health Research, AUSTRALIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceptualization: GN.

                • Formal analysis: GN MJG JLG.

                • Funding acquisition: GN JLG.

                • Investigation: GP KP MJG DKP JLG GN.

                • Methodology: GN MG SV SF.

                • Supervision: GN RF MCR DP DKP.

                • Writing – original draft: MJG JLG GN.

                Article
                PONE-D-16-12976
                10.1371/journal.pone.0162244
                5028059
                27643599
                fe6a6e9c-f70b-4343-87ec-c5ed6f028c0c
                © 2016 Gutierrez et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 March 2016
                : 21 August 2016
                Page count
                Figures: 6, Tables: 1, Pages: 20
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000050, National Heart, Lung, and Blood Institute;
                Award ID: HL090020
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000071, National Institute of Child Health and Human Development;
                Award ID: HD001399
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100006108, National Center for Advancing Translational Sciences;
                Award ID: KL2TR000076
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100006108, National Center for Advancing Translational Sciences;
                Award ID: UL1TR000075
                Award Recipient :
                This work was supported by grants: GN—National Heart, Lung and Blood Institute, NHLBI/HL090020 (K12 Genomics of Lung), http://www.nhlbi.nih.gov; JLG—National Heart, Lung and Blood Institute, NHLBI/1K01HL125474-01, http://www.nhlbi.nih.gov; GN—National Institute for Child Health and Human Development, NICHC/HD001399 (K12 Child Health Research Career Development Award), https://www.nichd.nih.gov; GN—National Center for Advancing Translational Sciences, KL2TR000076, https://www.nichd.nih.gov; GN—National Center for Advancing Translational Sciences, UL1TR000075, https://www.nichd.nih.gov; JLG—FAMRI: Young Clinical Scientist Award, 113393, http://www.famri.org/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Pulmonology
                Respiratory Infections
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Secretion
                Medicine and Health Sciences
                Physiology
                Physiological Processes
                Secretion
                Biology and Life Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Rhinovirus Infection
                People and Places
                Population Groupings
                Age Groups
                Children
                People and Places
                Population Groupings
                Families
                Children
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                MicroRNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                MicroRNAs
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article