1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential sex-dependent susceptibility to diastolic dysfunction and arrhythmia in cardiomyocytes from obese diabetic heart failure with preserved ejection fraction model

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          Sex differences in heart failure with preserved ejection fraction (HFpEF) are important, but key mechanisms involved are incompletely understood. While animal models can inform about sex-dependent cellular and molecular changes, many previous pre-clinical HFpEF models have failed to recapitulate sex-dependent characteristics of human HFpEF. We tested for sex differences in HFpEF using a two-hit mouse model (leptin receptor–deficient db/db mice plus aldosterone infusion for 4 weeks; db/db + Aldo).

          Methods and results

          We performed echocardiography, electrophysiology, intracellular Ca2+ imaging, and protein analysis. Female HFpEF mice exhibited more severe diastolic dysfunction in line with increased titin N2B isoform expression and PEVK element phosphorylation and reduced troponin-I phosphorylation. Female HFpEF mice had lower BNP levels than males despite similar comorbidity burden (obesity, diabetes) and cardiac hypertrophy in both sexes. Male HFpEF mice were more susceptible to cardiac alternans. Male HFpEF cardiomyocytes (vs. female) exhibited higher diastolic [Ca2+], slower Ca2+ transient decay, reduced L-type Ca2+ current, more pronounced enhancement of the late Na+ current, and increased short-term variability of action potential duration (APD). However, male and female HFpEF myocytes showed similar downregulation of inward rectifier and transient outward K+ currents, APD prolongation, and frequency of delayed afterdepolarizations. Inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed all pathological APD changes in HFpEF in both sexes, and empagliflozin pre-treatment mimicked these effects of CaMKII inhibition. Vericiguat had only slight benefits, and these effects were larger in HFpEF females.

          Conclusion

          We conclude that the db/db + Aldo pre-clinical HFpEF murine model recapitulates key sex-specific mechanisms in HFpEF and provides mechanistic insights into impaired excitation–contraction coupling and sex-dependent differential arrhythmia susceptibility in HFpEF with potential therapeutic implications. In male HFpEF myocytes, altered Ca2+ handling and electrophysiology aligned with diastolic dysfunction and arrhythmias, while worse diastolic dysfunction in females may depend more on altered myofilament properties.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac excitation-contraction coupling.

          Of the ions involved in the intricate workings of the heart, calcium is considered perhaps the most important. It is crucial to the very process that enables the chambers of the heart to contract and relax, a process called excitation-contraction coupling. It is important to understand in quantitative detail exactly how calcium is moved around the various organelles of the myocyte in order to bring about excitation-contraction coupling if we are to understand the basic physiology of heart function. Furthermore, spatial microdomains within the cell are important in localizing the molecular players that orchestrate cardiac function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrosative stress drives heart failure with preserved ejection fraction

            Heart failure with preserved ejection fraction (HFpEF) is a common, morbid, and mortal syndrome for which there are no evidence-based therapies. Here, we report that concomitant metabolic and hypertensive stress in mice elicited by a combination of high fat diet (HFD) and constitutive nitric oxide (NO) synthase inhibition by N [w] -nitro-l-arginine methyl ester (L-NAME) recapitulates the numerous systemic and cardiovascular features of human HFpEF. One of the unfolded protein response (UPR) effectors, the spliced form of X-box binding protein 1 (Xbp1s), was reduced in the myocardium of both experimental and human HFpEF. Mechanistically, the decrease in Xbp1s resulted from increased inducible NO synthase (iNOS) activity and S-nitrosylation of endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective Xbp1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of Xbp1s, each ameliorated the HFpEF phenotype. We have unveiled iNOS-driven dysregulation of IRE1α-Xbp1s as a crucial mechanism of cardiomyocyte dysfunction in HFpEF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sex differences in heart failure

              The overall lifetime risk of heart failure (HF) is similar between men and women, however, there are marked sex differences in the landscape of this condition that are both important and under-recognized. Men are predisposed to HF with reduced ejection fraction (HFrEF), whereas women predominate in HF with preserved ejection fraction (HFpEF). Sex differences are also notable in the penetrance of genetic cardiomyopathies, risk factors, e.g. breast cancer which may be associated with cancer treatment-induced cardiomyopathy, as well as sex-specific conditions such as peripartum cardiomyopathy (PPCM). This review outlines the key sex differences with respect to clinical characteristics, pathophysiology, and therapeutic responses to HF treatments. Finally, we address important differences in the prognosis of HF. A central hypothesis is that the higher risk of HFrEF in men compared to women may be attributable to their predisposition to macrovascular coronary artery disease and myocardial infarction, whereas coronary microvascular dysfunction/endothelial inflammation has been postulated to play a key role in HFpEF and maybe the common link among HF syndromes that women are predisposed to Takotsubo cardiomyopathy, PPCM, and breast cancer radiotherapy-induced cardiomyopathy. Under-pinning current sex disparities in HF, there is a paucity of women recruited to HF clinical trials (20–25% of cohorts) and thus treatment guidelines are predominantly based on male-derived data. Large gaps in knowledge exist in sex-specific mechanisms, optimal drug doses for women and sex-specific criteria for device therapy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Cardiovascular Research
                Oxford University Press (OUP)
                0008-6363
                1755-3245
                April 26 2024
                April 26 2024
                Article
                10.1093/cvr/cvae070
                fe07af64-1a20-44c5-a7c9-e15ae62e0768
                © 2024

                https://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article