47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks

      other
      , , ,
      The Journal of Neuroscience
      Society for Neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As most afferent axons to the thalamus originate in the cerebral cortex, we assumed that the slow (< 1 Hz) cortical oscillation described in the two companion articles is reflected in reticular (RE) thalamic and thalamocortical cells. We hypothesized that the cortically generated slow rhythm would appear in the thalamus in conjunction with delta and spindle oscillations arising from intrinsic and network properties of thalamic neurons. Intracellular recordings have been obtained in anesthetized cats from RE (n = 51) and cortically projecting (n = 240) thalamic neurons. RE cells were physiologically identified by cortically evoked high-frequency spike bursts and depolarizing spindle oscillations. Thalamocortical cells were recognized by backfiring from appropriate neocortical areas, spindle- related cyclic IPSPs, and hyperpolarization-activated delta oscillation consisting of rhythmic low-threshold spikes (LTSs) alternating with afterhyperpolarizing potentials (AHPs). The slow rhythm (0.3–0.5 Hz) was recorded in 65% of RE neurons. In approximately 90% of oscillating cells, the rhythm consisted of prolonged depolarizations giving rise to trains of single action potentials. DC hyperpolarization increased the synaptic noise and, in a few cells, suppressed the long-lasting depolarizing phase of the slow rhythm, without blocking the fast EPSPs. In approximately 10% of oscillating neurons, the hyperpolarizing phase of the oscillation was much more pronounced, thus suggesting that the slow rhythm was produced by inhibitory sculpturing of the background firing. The slow oscillation was associated with faster rhythms (4–8 Hz) in the same RE neuron. The slow rhythm of RE neurons was closely related to EEG wave complexes recurring with the same frequency, and its strong dependency upon a synchronized state of cortical EEG was observed during shifts in EEG patterns at different levels of anesthesia. In 44% of thalamocortical cells the slow rhythm of depolarizing sequences was apparent and it could coexist with delta or spindle oscillations in the same neuron. The occurrence of the slowly recurring depolarizing envelopes was delayed by the hyperpolarizing spindle sequences or by the LTS-AHP sequences of delta oscillation. The hyperpolarization-activated delta potentials that tended to dampen after a few cycles were grouped in sequences recurring with the slow rhythm. We finally propose a unified scenario of the genesis of the three major sleep rhythms: slow, delta, and spindle oscillations.

          Related collections

          Author and article information

          Journal
          J Neurosci
          J. Neurosci
          jneuro
          The Journal of Neuroscience
          Society for Neuroscience
          0270-6474
          1529-2401
          1 August 1993
          : 13
          : 8
          : 3284-3299
          Affiliations
          Laboratoire de Neurophysiologie, Faculte de Medecine, Universite Laval, Quebec, Canada.
          Article
          PMC6576531 PMC6576531 6576531 jneuro;13/8/3284
          10.1523/JNEUROSCI.13-08-03284.1993
          6576531
          8340808
          fd9faa54-353b-4548-813c-d838b8c3263f
          © 1993 by Society for Neuroscience
          History
          Categories
          Articles
          Custom metadata
          13/8/3284
          3284

          Comments

          Comment on this article