3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The diagnostic value of lipoprotein-associated phospholipase A2 in early diabetic nephropathy

      research-article
      a , b , a , c
      Annals of Medicine
      Taylor & Francis
      Lipoprotein-associated phospholipase A2, diabetic nephropathy, type 2 diabetes mellitus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The aim of this study was to investigate diagnosis of lipoprotein-associated phospholipase A2 (Lp-PLA2) in early diabetic nephropathy (DN).

          Methods

          A total of 342 type 2 diabetes mellitus (T2DM) patients hospitalized in department of metabolism and nephrology in our hospital from January 2019 to December 2019 were randomly selected. Patients were divided into three groups via urine albumin level: diabetes mellitus (DM) group, simple diabetes group (114 patients, urinary albumin creatinine ratio (UACR) < 30 mg/g); DN1 group, early DN group (114 patients, UACR: 30–300 mg/g); DN2 group: clinical DN group (114 patients, UACR > 300mg/g). Eighty healthy adults were examined at the same time. Lp-PLA2, fasting blood glucose (FBG), creatinine (Cr), triglyceride (TG), total cholesterol (TCHOL), high-density lipoprotein (HDL), low-density lipoprotein (LDL), haemoglobin A1c (HbA1c), blood urea nitrogen/creatinine (BUN/Cr), estimated glomerular filtration rate (eGFR), 24-h urine protein, albumin and creatinine of all subjects were detected and compared. Pearson’s correlation analysis and multiple ordered logistic regression were used to investigate the correlation between serum Lp-PLA2 level and DN. The possibility of Lp-PLA2 in the diagnosis of early DN was studied by using the subject working curve.

          Results

          Lp-PLA2 level in DN1 and DN2 groups was significantly higher than that in DM group, with statistical difference ( p < .05). With the progression of DN, the level of Lp-PLA2 gradually increased p < .05. Lp-PLA2 was positively correlated with FBG, TG, LDL and HbA1c ( R = 0.637, p < .01; R = 0.314, p = .01; R = 0.213, p = .01; R = 0.661, p ≤ .01), was negatively correlated with HDL ( r = –0.230, p < .01). The results showed that Lp-PLA2 was an independent factor in the evaluation of early DN. The area under the curve for the evaluation of serum Lp-PLA2 level in early DN was 0.841, the optimal critical value was 155.9 ng/mL, the sensitivity was 88% and the specificity was 76.2%.

          Conclusions

          Lp-PLA2 is an independent factor for the evaluation of early DN, and can be used as an important potential specific indicator for the diagnosis of early DN, meanwhile monitoring the progression of DN.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.

          The classification of diabetes mellitus and the tests used for its diagnosis were brought into order by the National Diabetes Data Group of the USA and the second World Health Organization Expert Committee on Diabetes Mellitus in 1979 and 1980. Apart from minor modifications by WHO in 1985, little has been changed since that time. There is however considerable new knowledge regarding the aetiology of different forms of diabetes as well as more information on the predictive value of different blood glucose values for the complications of diabetes. A WHO Consultation has therefore taken place in parallel with a report by an American Diabetes Association Expert Committee to re-examine diagnostic criteria and classification. The present document includes the conclusions of the former and is intended for wide distribution and discussion before final proposals are submitted to WHO for approval. The main changes proposed are as follows. The diagnostic fasting plasma (blood) glucose value has been lowered to > or =7.0 mmol l(-1) (6.1 mmol l(-1)). Impaired Glucose Tolerance (IGT) is changed to allow for the new fasting level. A new category of Impaired Fasting Glycaemia (IFG) is proposed to encompass values which are above normal but below the diagnostic cut-off for diabetes (plasma > or =6.1 to or =5.6 to <6.1 mmol l(-1)). Gestational Diabetes Mellitus (GDM) now includes gestational impaired glucose tolerance as well as the previous GDM. The classification defines both process and stage of the disease. The processes include Type 1, autoimmune and non-autoimmune, with beta-cell destruction; Type 2 with varying degrees of insulin resistance and insulin hyposecretion; Gestational Diabetes Mellitus; and Other Types where the cause is known (e.g. MODY, endocrinopathies). It is anticipated that this group will expand as causes of Type 2 become known. Stages range from normoglycaemia to insulin required for survival. It is hoped that the new classification will allow better classification of individuals and lead to fewer therapeutic misjudgements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic Kidney Disease: Challenges, Progress, and Possibilities.

            Diabetic kidney disease develops in approximately 40% of patients who are diabetic and is the leading cause of CKD worldwide. Although ESRD may be the most recognizable consequence of diabetic kidney disease, the majority of patients actually die from cardiovascular diseases and infections before needing kidney replacement therapy. The natural history of diabetic kidney disease includes glomerular hyperfiltration, progressive albuminuria, declining GFR, and ultimately, ESRD. Metabolic changes associated with diabetes lead to glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Despite current therapies, there is large residual risk of diabetic kidney disease onset and progression. Therefore, widespread innovation is urgently needed to improve health outcomes for patients with diabetic kidney disease. Achieving this goal will require characterization of new biomarkers, designing clinical trials that evaluate clinically pertinent end points, and development of therapeutic agents targeting kidney-specific disease mechanisms (e.g., glomerular hyperfiltration, inflammation, and fibrosis). Additionally, greater attention to dissemination and implementation of best practices is needed in both clinical and community settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms linking obesity to insulin resistance and type 2 diabetes.

              Obesity is associated with an increased risk of developing insulin resistance and type 2 diabetes. In obese individuals, adipose tissue releases increased amounts of non-esterified fatty acids, glycerol, hormones, pro-inflammatory cytokines and other factors that are involved in the development of insulin resistance. When insulin resistance is accompanied by dysfunction of pancreatic islet beta-cells - the cells that release insulin - failure to control blood glucose levels results. Abnormalities in beta-cell function are therefore critical in defining the risk and development of type 2 diabetes. This knowledge is fostering exploration of the molecular and genetic basis of the disease and new approaches to its treatment and prevention.
                Bookmark

                Author and article information

                Journal
                Ann Med
                Ann Med
                Annals of Medicine
                Taylor & Francis
                0785-3890
                1365-2060
                11 August 2023
                2023
                11 August 2023
                : 55
                : 2
                : 2230446
                Affiliations
                [a ]Laboratory Department of Tianjin Third Central Hospital , Tianjin, China
                [b ]Experimental Center of Clinical Medical College of Tianjin Medical University , Tianjin, China
                [c ]Medical Laboratory College, Tianjin Medical University , Tianjin, China
                Author notes
                CONTACT Yanna Shen shenyanna7856@ 123456163.com Medical Laboratory College, Tianjin Medical University , No. 22, Meteorological Station Road, Heping District, Tianjin 300203, China
                Article
                2230446
                10.1080/07853890.2023.2230446
                10424594
                37566692
                fd1928b8-0da6-4113-8393-e05fa90f29c1
                © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 2, Tables: 4, Pages: 8, Words: 5024
                Categories
                Research Article
                Endocrinology

                Medicine
                lipoprotein-associated phospholipase a2,diabetic nephropathy,type 2 diabetes mellitus

                Comments

                Comment on this article