96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Traditional medicinal plants have been used as an alternative medicine in many parts of the world, including Ethiopia. There are many documented scientific reports on antimicrobial activities of the same. To our knowledge, however, there is no report on the anti-Quorum Sensing (Quorum Quenching, QQ) potential of traditional Ethiopian medicinal plants. As many of the opportunistic pathogenic bacteria depend on Quorum Sensing (QS) systems to coordinate their virulence expression, interference with QS could be a novel approach to control bacterial infections. Thus, the aim of this study was to evaluate selected medicinal plants from Ethiopia for their antimicrobial activities against bacterial and fungal pathogens; and to assess the interference of these plant extracts with QS of bacteria.

          Methods

          Antimicrobial activities of plant extracts (oil, resins and crude extracts) were evaluated following standard agar diffusion technique. The minimum inhibitory concentrations (MIC) of potent extracts were determined using 96 well micro-titer plates and optical densities were measured using an ELISA Microplate reader. Interference with Quorum Sensing activities of extracts was determined using the recently established E. coli based reporter strain AI1-QQ.1 and signaling molecule N-(ß-ketocaproyl)-L-homoserine lactone (3-oxo-C6-HSL).

          Results

          Petroleum ether extract of seed of Nigella sativa exhibited the highest activity against both the laboratory isolated Bacillus cereus [inhibition zone (IZ), 44 ± 0.31 mm] and B. cereus ATCC 10987 (IZ, 40 ± 2.33 mm). Similarly, oil extract from mature ripe fruit husk of Aframomum corrorima and mature unripe fruit of A. corrorima revealed promising activities against Candida albicans ATCC 90028 (IZ, 35 ± 1.52 mm) and Staphylococcus aureus DSM 346 (IZ, 25 ± 1.32 mm), respectively. Antimicrobial activities of oil extract from husk of A. corrorima and petroleum ether extract of seed of N. sativa were significantly higher than that of the control antibiotic [Gentamycin sulfate, (IZ, 25–30 mm)]. The lowest MIC value (12.5 mg/mL) was recorded for oil from husk of A. corrorima against Pseudomonas aeruginosa. Of the total eighteen extracts evaluated, two of the extracts [Methanol extract of root of Albiza schimperiana (ASRM) and petroleum ether extract of seed of Justica schimperiana (JSSP)] interfered with cell-cell communication most likely by interacting with the signaling molecules.

          Conclusion

          Traditional medicinal plants from Ethiopia are potential source of alternative medicine for the local community and scientific research in search for alternative drugs to halt challenges associated with the emerging antimicrobial resistance. Furthermore, the Quorum Quenching activities observed in two of the plant extracts calls for more comprehensive evaluation of medicinal plants for the control of many bacterial processes and phenotypic behaviors such as pathogenicity, swarming, and biofilm formation. Being the first assessment of its kind on the potential application of Ethiopian traditional medicinal plants for interference in microbial cell-cell communication (anti-Quorum Sensing activities), the detailed chemistry of the active compounds and possible mechanism(s) of actions of the bio-molecules responsible for the observed interference were not addressed in the current study. Thus, further evaluation for the nature of those active compounds (bio-molecules) and detailed mechanism(s) of their interaction with microbial processes are recommended.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial activity of flavonoids

          Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (−)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2′-trihydroxy-5′-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol.

            The inoculum size effect in the dimorphic fungus Candida albicans results from production of an extracellular quorum-sensing molecule (QSM). This molecule prevents mycelial development in both a growth morphology assay and a differentiation assay using three chemically distinct triggers for germ tube formation (GTF): L-proline, N-acetylglucosamine, and serum (either pig or fetal bovine). In all cases, the presence of QSM prevents the yeast-to-mycelium conversion, resulting in actively budding yeasts without influencing cellular growth rates. QSM exhibits general cross-reactivity within C. albicans in that supernatants from strain A72 are active on five other strains of C. albicans and vice versa. The QSM excreted by C. albicans is farnesol (C(15)H(26)O; molecular weight, 222.37). QSM is extracellular, and is produced continuously during growth and over a temperature range from 23 to 43 degrees C, in amounts roughly proportional to the CFU/milliliter. Production is not dependent on the type of carbon source nor nitrogen source or on the chemical nature of the growth medium. Both commercial mixed isomer and (E,E)-farnesol exhibited QSM activity (the ability to prevent GTF) at a level sufficient to account for all the QSM activity present in C. albicans supernatants, i.e., 50% GTF at ca. 30 to 35 microM. Nerolidol was ca. two times less active than farnesol. Neither geraniol (C(10)), geranylgeraniol (C(20)), nor farnesyl pyrophosphate had any QSM activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quorum Sensing and Bacterial Social Interactions in Biofilms

              Many bacteria are known to regulate their cooperative activities and physiological processes through a mechanism called quorum sensing (QS), in which bacterial cells communicate with each other by releasing, sensing and responding to small diffusible signal molecules. The ability of bacteria to communicate and behave as a group for social interactions like a multi-cellular organism has provided significant benefits to bacteria in host colonization, formation of biofilms, defense against competitors, and adaptation to changing environments. Importantly, many QS-controlled activities have been involved in the virulence and pathogenic potential of bacteria. Therefore, understanding the molecular details of quorum sensing mechanisms and their controlled social activities may open a new avenue for controlling bacterial infections.
                Bookmark

                Author and article information

                Contributors
                ketemabacha2002@yahoo.com
                yinebeb_tariku@yahoo.com
                fgfish9@gmail.com
                peaceshibru@gmail.com
                alimhmd@yahoo.com
                nweiland@ifam.uni-kiel.de
                rschmitz@ifam.uni-kiel.de
                mulatmulugeta6@gmail.com
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                11 July 2016
                11 July 2016
                2016
                : 16
                : 139
                Affiliations
                [ ]Depatment of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
                [ ]Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
                [ ]Department of Horticulture, College of Agriculture, Adigrat University, Adigrat, Ethiopia
                [ ]Department of Horticulture and Plant Science, College of Agriculture and Natural Resources Management, Gambella University, Gambella, Ethiopia
                [ ]Departemnt of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
                [ ]Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
                [ ]Derpartment of Biology, College of Natural and Computational Sciences, Wollo University, Dessie, Ethiopia
                Article
                765
                10.1186/s12866-016-0765-9
                4939588
                27400878
                fcfed15d-fd94-4ba0-bc7f-59a85477cfa3
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 February 2016
                : 7 July 2016
                Funding
                Funded by: TWAS and DFG
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Microbiology & Virology
                alternative medicine,drug resistance,ethiopia,medicinal plants,mic,quorum sensing,quorum quenching

                Comments

                Comment on this article