35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Significant association between admission serum monocyte chemoattractant protein-1 and early changes in myocardial function in patients with first ST-segment elevation myocardial infarction after primary percutaneous coronary intervention

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies have indicated that monocyte chemoattractant protein-1 (MCP-1) plays an important role in the initiation and progression of ischaemic heart disease. However, no previous research has investigated the correlation between serum MCP-1 levels and early changes in myocardial function in patients with ST-segmental elevation myocardial infarction (STEMI) after primary percutaneous coronary intervention (PCI).

          Methods

          A total of 87 STEMI patients who had undergone a successful primary PCI were consecutively recruited. All the patients included in this study were grouped into two subgroups according to the median value of MCP-1 upon admission. An early change in left ventricular ejection fraction (LVEF) was defined as (LVEF at 3 months post-STEMI)-(LVEF at 2 days post-STEMI).

          Results

          Serum MCP-1 levels increased gradually over time during the first 72 h after the onset of STEMI. The concentration of hypersensitive cardiac troponin I (hs-cTnI) upon admission as well as at 24 h and 72 h after primary PCI, especially the peak hs-cTnI concentration, declined significantly in the low admission MCP-1 group. As continuous variable, admission MCP-1 also correlated positively with admission hs-cTnI, hs-cTnI at 24 h after primary PCI, and peak hs-cTnI. Additionally, the absolute early change in LVEF improved markedly in the low admission MCP-1 group (3.77% ± 6.05% vs − 0.18% ± 7.69%, p = 0.009) compared to that in the high admission MCP-1 group. Most importantly, the global LVEF in the low admission MCP-1 group also improved significantly at 3 months compared to baseline LVEF (55.79% ± 7.05% vs 59.60% ± 6.51%, p = 0.011), while an improvement in global LVEF was not observed in the high admission MCP-1 group. Furthermore, as a continuous variable, the MCP-1 level up admission also correlated negatively with early changes in LVEF ( r = − 0.391, p = 0.001). After assessment by multiple linear regression analysis, the MCP-1 level upon admission remained correlated with early changes in LVEF [beta = − 0.089, 95% CI (− 0.163 to − 0.015), p = 0.020].

          Conclusion

          MCP-1 upon admission not only correlated positively with hs-cTnI at different time points and peak hs-cTnI, but also associated inversely with early improvements in myocardial function in patients with first STEMI. So we speculated that suppression the expression of MCP-1 via various ways may be a promising therapeutic target in myocardial I/R injury in the future.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          The inflammatory response in myocardial infarction.

          One of the major therapeutic goals of modern cardiology is to design strategies aimed at minimizing myocardial necrosis and optimizing cardiac repair following myocardial infarction. However, a sound understanding of the biology is necessary before a specific intervention is pursued on a therapeutic basis. This review summarizes our current understanding of the cellular and molecular mechanisms regulating the inflammatory response following myocardial ischemia and reperfusion. Myocardial necrosis induces complement activation and free radical generation, triggering a cytokine cascade initiated by Tumor Necrosis Factor (TNF)-alpha release. If reperfusion of the infarcted area is initiated, it is attended by an intense inflammatory reaction. Interleukin (IL)-8 synthesis and C5a activation have a crucial role in recruiting neutrophils in the ischemic and reperfused myocardium. Neutrophil infiltration is regulated through a complex sequence of molecular steps involving the selectins and the integrins, which mediate leukocyte rolling and adhesion to the endothelium. Marginated neutrophils exert potent cytotoxic effects through the release of proteolytic enzymes and the adhesion with Intercellular Adhesion Molecule (ICAM)-1 expressing cardiomyocytes. Despite this potential injury, substantial evidence suggests that reperfusion enhances cardiac repair improving patient survival; this effect may be in part related to the inflammatory response. Monocyte Chemoattractant Protein (MCP)-1 is also markedly upregulated in the infarcted myocardium inducing recruitment of mononuclear cells in the injured areas. Monocyte-derived macrophages and mast cells may produce cytokines and growth factors necessary for fibroblast proliferation and neovascularization, leading to effective repair and scar formation. At this stage expression of inhibitory cytokines such as IL-10 may have a role in suppressing the acute inflammatory response and in regulating extracellular matrix metabolism. Fibroblasts in the healing scar undergo phenotypic changes expressing smooth muscle cell markers. Our previous review in this journal focused almost exclusively on reduction of the inflammatory injury. The current update is prompted by the potential therapeutic opportunity that the open vessel offers. By promoting more effective tissue repair, it may be possible to reduce the deleterious remodeling, that is the leading cause of heart failure and death. Elucidating the complex interactions and regulatory mechanisms responsible for cardiac repair may allow us to design effective inflammation-related interventions for the treatment of myocardial infarction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation, Immunity, and Infection in Atherothrombosis

            Observations on human and experimental atherosclerosis, biomarker studies, and now a large-scale clinical trial support the operation of immune and inflammatory pathways in this disease. The factors that incite innate and adaptive immune responses implicated in atherogenesis and in lesion complication include traditional risk factors such as protein and lipid components of native and modified low-density lipoprotein, angiotensin II, smoking, visceral adipose tissue, and dysmetabolism. Infectious processes and products of the endogenous microbiome might also modulate atherosclerosis and its complications either directly, or indirectly by eliciting local and systemic responses that potentiate disease expression. Trials with antibiotics have not reduced recurrent cardiovascular events, nor have vaccination strategies yet achieved clinical translation. However, anti-inflammatory interventions such as anticytokine therapy and colchicine have begun to show efficacy in this regard. Thus, inflammatory and immune mechanisms can link traditional and emerging risk factors to atherosclerosis, and offer novel avenues for therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MCP-1: chemoattractant with a role beyond immunity: a review.

              Monocyte Chemoattractant Protein (MCP)-1, a potent monocyte attractant, is a member of the CC chemokine subfamily. MCP-1 exerts its effects through binding to G-protein-coupled receptors on the surface of leukocytes targeted for activation and migration. Role of MCP-1 and its receptor CCR2 in monocyte recruitment during infection or under other inflammatory conditions is well known. A comprehensive literature search was conducted from the websites of the National Library of Medicine (http://www.ncbl.nlm.nih.gov) and Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature (http://www.pubmedcentral.nih.gov/). The data was assessed from books and journals that published relevant articles in this field. Recent and ongoing research indicates the role of MCP-1 in various allergic conditions, immunodeficiency diseases, bone remodelling, and permeability of blood - brain barrier, atherosclerosis, nephropathies and tumors. MCP-1 plays an important role in pathogenesis of various disease states and hence MCP-1 inhibition may have beneficial effects in such conditions. 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                13126995966@163.com
                15810827038@163.com
                duyupla0604@outlook.com
                zhangjianwei_2003@sina.com
                liujinxing@ccmu.edu.cn
                hhy123100@163.com
                86-10-64456489 , zyingxinmi@163.com
                Journal
                BMC Cardiovasc Disord
                BMC Cardiovasc Disord
                BMC Cardiovascular Disorders
                BioMed Central (London )
                1471-2261
                10 May 2019
                10 May 2019
                2019
                : 19
                : 107
                Affiliations
                ISNI 0000 0004 0369 153X, GRID grid.24696.3f, Department of cardiology, Beijing Anzhen Hospital, , Capital Medical University, ; #2, Anzhenlu, Chaoyang District, Beijing, 100029 China
                Author information
                http://orcid.org/0000-0002-4897-2779
                Article
                1098
                10.1186/s12872-019-1098-z
                6511179
                31077149
                fc232aaa-5196-457e-9963-30c8e2384963
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 December 2018
                : 3 May 2019
                Funding
                Funded by: Beijing Municipal Science and Technology Commission
                Award ID: Z171100000417042
                Funded by: National Key Research and Development Program of China
                Award ID: 2017YFC0908800
                Funded by: the “Beijing Municipal Administration of Hospitals” Ascent Plan
                Award ID: DFL20150601
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Cardiovascular Medicine
                stemi,mcp-1,lvef,hs-ctni,i/r injury
                Cardiovascular Medicine
                stemi, mcp-1, lvef, hs-ctni, i/r injury

                Comments

                Comment on this article