35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A major endogenous protective mechanism in many organs against ischemia/reperfusion (I/R) injury is ischemic preconditioning (IPC). By moderately uncoupling the mitochondrial respiratory chain and decreasing production of reactive oxygen species (ROS), IPC reduces apoptosis induced by I/R by reducing cytochrome c release from the mitochondria. One element believed to contribute to reduce ROS production is the uncoupling protein UCP2 (and UCP3 in the heart). Although its implication in IPC in the brain has been shown in vitro, no in vivo study of protein has shown its upregulation. Our first goal was to determine in rat hippocampus whether UCP2 protein upregulation was associated with IPC-induced protection and increased ROS production. The second goal was to determine whether the peptide ghrelin, which possesses anti-oxidant and protective properties, alters UCP2 mRNA levels in the same way as IPC during protection.

          Results

          After global forebrain ischemia (15 min) with 72 h reperfusion (I/R group), we found important neuronal lesion in the rat hippocampal CA1 region, which was reduced by a preceding 3-min preconditioning ischemia (IPC+I/R group), whereas the preconditioning stimulus alone (IPC group) had no effect. Compared to control, UCP2 protein labelling increased moderately in the I/R (+39%, NS) and IPC+I/R (+28%, NS) groups, and substantially in the IPC group (+339%, P < 0.05). Treatment with superoxide dismutase (10000 U/kg ip) at the time of a preconditioning ischemia greatly attenuated (-73%, P < 0.001) the increase in UCP2 staining at 72 h, implying a role of oxygen radicals in UCP2 induction.

          Hippocampal UCP2 mRNA showed a moderate increase in I/R (+33%, P < 0.05) and IPC+I/R (+40%, P < 0.05) groups versus control, and a large increase in the IPC group (+333%, P < 0.001). In ghrelin experiments, the I/R+ghrelin group (3 daily administrations) showed considerable protection of CA1 neurons versus I/R animals, and increased hippocampal UCP2 mRNA (+151%, P < 0.001).

          Conclusion

          We confirm that IPC causes increased expression of UCP2 protein in vivo, at a moment appropriate for protection against I/R in the hippocampus. The two dissimilar protective strategies, IPC and ghrelin administration, were both associated with upregulated UCP2, suggesting that UCP2 may often represent a final common pathway in protection from I/R.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals.

          The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preconditioning and postconditioning: underlying mechanisms and clinical application.

            Coronary heart disease (CHD) is the leading cause of death world-wide. Its major pathophysiological manifestation is acute myocardial ischaemia-reperfusion injury. Innovative treatment strategies for protecting the myocardium against the detrimental effects of this form of injury are required in order to improve clinical outcomes in patients with CHD. In this regard, harnessing the endogenous protection elicited by the heart's ability to 'condition' itself, has recently emerged as a powerful new strategy for limiting myocardial injury, preserving left ventricular systolic function and potentially improving morbidity and mortality in patients with CHD. 'Conditioning' the heart to tolerate the effects of acute ischaemia-reperfusion injury can be initiated through the application of several different mechanical and pharmacological strategies. Inducing brief non-lethal episodes of ischaemia and reperfusion to the heart either prior to, during, or even after an episode of sustained lethal myocardial ischaemia has the capacity to dramatically reduce myocardial injury--a phenomenon termed ischaemic preconditioning (IPC), preconditioning or postconditioning, respectively. Intriguingly, similar levels of cardioprotection can be achieved by applying the brief episodes of non-lethal ischaemia and reperfusion to an organ or tissue remote from the heart, thereby obviating the need to 'condition' the heart directly. This phenomenon has been termed remote ischaemic 'conditioning', and it can offer widespread systemic protection to other organs which are susceptible to acute ischaemia-reperfusion injury such as the brain, liver, intestine or kidney. Furthermore, the identification of the signalling pathways which underlie the effects of 'conditioning', has provided novel targets for pharmacological agents allowing one to recapitulate the benefits of these cardioprotective phenomena--so-termed pharmacological preconditioning and postconditioning. Initial clinical studies, reporting beneficial effects of 'conditioning' the heart to tolerate acute ischaemia-reperfusion injury, have been encouraging. Larger multi-centred randomised studies are now required to determine whether these 'conditioning' strategies are able to impact on clinical outcomes. In this article, we provide an overview of 'conditioning' in all its various forms, describe the underlying mechanisms and review the recent clinical application of this emerging cardioprotective strategy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.

              Cardiac ischemia decreases complex III activity, cytochrome c content, and respiration through cytochrome oxidase in subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The reversible blockade of electron transport with amobarbital during ischemia protects mitochondrial respiration and decreases myocardial injury during reperfusion. These findings support that mitochondrial damage occurs during ischemia and contributes to myocardial injury during reperfusion. The current study addressed whether ischemic damage to the electron transport chain (ETC) increased the net production of reactive oxygen species (ROS) from mitochondria. SSM and IFM were isolated from 6-mo-old Fisher 344 rat hearts following 25 min global ischemia or following 40 min of perfusion alone as controls. H(2)O(2) release from SSM and IFM was measured using the amplex red assay. With glutamate as a complex I substrate, the net production of H(2)O(2) was increased by 178 +/- 14% and 179 +/- 17% in SSM and IFM (n = 9), respectively, following ischemia compared with controls (n = 8). With succinate as substrate in the presence of rotenone, H(2)O(2) increased by 272 +/- 22% and 171 +/- 21% in SSM and IFM, respectively, after ischemia. Inhibitors of electron transport were used to assess maximal ROS production. Inhibition of complex I with rotenone increased H(2)O(2) production by 179 +/- 24% and 155 +/- 14% in SSM and IFM, respectively, following ischemia. Ischemia also increased the antimycin A-stimulated production of H(2)O(2) from complex III. Thus ischemic damage to the ETC increased both the capacity and the net production of H(2)O(2) from complex I and complex III and sets the stage for an increase in ROS production during reperfusion as a mechanism of cardiac injury.
                Bookmark

                Author and article information

                Journal
                BMC Physiol
                BMC Physiology
                BioMed Central
                1472-6793
                2009
                22 September 2009
                : 9
                : 17
                Affiliations
                [1 ]Institute of Physiology, School of Medicine, Shandong University, Jinan 250012, Shandong, PR China
                [2 ]Laboratory of Microcirculation Research (EA 3509), University Paris 7, France
                [3 ]Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250012, Shandong, PR China
                [4 ]Medical Pharmacology and Physiology, School of Medicine, University of Missouri, 1 Hospital drive, Columbia, MO 65212, USA
                Article
                1472-6793-9-17
                10.1186/1472-6793-9-17
                2754976
                19772611
                fbbb976a-e207-4723-b8be-8d81f52437ac
                Copyright © 2009 Liu et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 March 2009
                : 22 September 2009
                Categories
                Research Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article