43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σ E- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.

          Related collections

          Most cited references246

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

          Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Citrobacter rodentium: infection, inflammation and the microbiota.

            Citrobacter rodentium is a mucosal pathogen of mice that shares several pathogenic mechanisms with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), which are two clinically important human gastrointestinal pathogens. Thus, C. rodentium has long been used as a model to understand the molecular basis of EPEC and EHEC infection in vivo. In this Review, we discuss recent studies in which C. rodentium has been used to study mucosal immunology, including the deregulation of intestinal inflammatory responses during bacteria-induced colitis and the role of the intestinal microbiota in mediating resistance to colonization by enteric pathogens. These insights should help to elucidate the roles of mucosal inflammatory responses and the microbiota in the virulence of enteric pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens.

              Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli O157:H7 are intestinal pathogens that profoundly damage the microvilli and subapical cytoskeleton of epithelial cells. Here we report finding in EPEC a 35-kbp locus containing several regions implicated in formation of these lesions. DNA probes throughout this locus hybridize to E. coli O157:H7 and other pathogens of three genera that cause similar lesions but do not hybridize to avirulent members of the same species. The EPEC locus and a different virulence locus of uropathogenic E. coli insert into the E. coli chromosome at the identical site and share highly similar sequences near the point of insertion.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                04 September 2019
                2019
                : 9
                : 313
                Affiliations
                [1] 1School of Biological Sciences, University of East Anglia , Norwich, United Kingdom
                [2] 2Department of Biological Sciences, University of Alberta , Edmonton, AB, Canada
                Author notes

                Edited by: Alain Charbit, INSERM U1151 Institut Necker Enfants Malades Centre de Médecine Moléculaire (INEM), France

                Reviewed by: Monique L. Van Hoek, George Mason University, United States; Matthew Cabeen, Oklahoma State University, United States

                *Correspondence: Gary Rowley g.rowley@ 123456uea.ac.uk

                This article was submitted to Molecular Bacterial Pathogenesis, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2019.00313
                6737893
                31552196
                fb55acb7-962f-49b7-8675-dbef65a87117
                Copyright © 2019 Hews, Cho, Rowley and Raivio.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 June 2019
                : 19 August 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 271, Pages: 25, Words: 22899
                Categories
                Cellular and Infection Microbiology
                Review

                Infectious disease & Microbiology
                gram-negative bacteria,envelope stress,pathogenesis,sigmae response,cpx response

                Comments

                Comment on this article