24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Critical Flicker Fusion Frequency: A Marker of Cerebral Arousal During Modified Gravitational Conditions Related to Parabolic Flights

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In situ evaluation of human brain performance and arousal remains challenging during operational circumstances, hence the need for a rapid, reliable and reproducible tool. Here we hypothesized that the Critical flicker fusion frequency (CFFF) reflecting/requiring visual integration, visuo-motor skills and decision-taking process might be a powerful, fast and simple tool in modified gravity environments. Therefore 11 male healthy volunteers were assessed for higher cognitive functions with CFFF during parabolic flights. They were assessed at different time points: upon arrival to the base, 30 min after subcutaneous scopolamine administration, before parabolas, during hypergravity and microgravity at break time (between the 16th and the 17th parabola), on the return flight and on the ground after landing. First, a stable, and consistent measurement of CFFF could be obtained within 12 s. Second, under modified gravitational conditions, the perceptual ability of participants is significantly modified. Compared to the baseline, evolution is characterized by a significant increase of CFFF when in microgravity (0g: 106.9 ± 5.5%), and a significant decrease of CFFF while in hypergravity (2g: 94.5 ± 3.8%). Other time-points were not statistically different from the baseline value. Although the underlying mechanism is still debated, we suggest that the CFFF test is a global marker of cerebral arousal as the result of visuo-motor and decision taking testing based on a simple visual stimulus with an uncomplicated set up that could be used under various environmental conditions. The authors express an opinion that it would be advisable to introduce CFFF measurement during spaceflights as it allows individual longitudinal assessment of individual ability even under conditions of incomplete physiological compensation, as shown here during parabolic flights.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks.

          The ability to continuously and unobtrusively monitor levels of task engagement and mental workload in an operational environment could be useful in identifying more accurate and efficient methods for humans to interact with technology. This information could also be used to optimize the design of safer, more efficient work environments that increase motivation and productivity. The present study explored the feasibility of monitoring electroencephalo-graphic (EEG) indices of engagement and workload acquired unobtrusively and quantified during performance of cognitive tests. EEG was acquired from 80 healthy participants with a wireless sensor headset (F3-F4,C3-C4,Cz-POz,F3-Cz,Fz-C3,Fz-POz) during tasks including: multi-level forward/backward-digit-span, grid-recall, trails, mental-addition, 20-min 3-Choice Vigilance, and image-learning and memory tests. EEG metrics for engagement and workload were calculated for each 1 -s of EEG. Across participants, engagement but not workload decreased over the 20-min vigilance test. Engagement and workload were significantly increased during the encoding period of verbal and image-learning and memory tests when compared with the recognition/ recall period. Workload but not engagement increased linearly as level of difficulty increased in forward and backward-digit-span, grid-recall, and mental-addition tests. EEG measures correlated with both subjective and objective performance metrics. These data in combination with previous studies suggest that EEG engagement reflects information-gathering, visual processing, and allocation of attention. EEG workload increases with increasing working memory load and during problem solving, integration of information, analytical reasoning, and may be more reflective of executive functions. Inspection of EEG on a second-by-second timescale revealed associations between workload and engagement levels when aligned with specific task events providing preliminary evidence that second-by-second classifications reflect parameters of task performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Effect of gravity and microgravity on intracranial pressure.

            Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth. Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure. This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Brain structural plasticity with spaceflight

              Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                02 October 2018
                2018
                : 9
                : 1403
                Affiliations
                [1] 1Environmental, Occupational and Ageing “Integrative Physiology” Laboratory, Haute Ecole Bruxelles-Brabant (HE2B) , Brussels, Belgium
                [2] 2Divers Alert Network (DAN) Europe Research Division , Brussels, Belgium
                [3] 3UNICAEN, INSERM, COMETE, Normandie Université , Caen, France
                [4] 4Belgian Road Safety Institute (BRSI) , Brussels, Belgium
                [5] 5Centre for Hyperbaric Oxygen Therapy, Military Hospital “Queen Astrid” , Brussels, Belgium
                [6] 6Laboratoire ORPHY, EA4324 UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest, France
                Author notes

                Edited by: Jörn Rittweger, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Germany

                Reviewed by: László Balázs, Research Centre for Natural Sciences (MTA), Hungary; Allison Paige Anderson, University of Colorado Boulder, United States

                *Correspondence: Pierre Lafère, pierre.lafere@ 123456chu-brest.fr

                This article was submitted to Environmental, Aviation and Space Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01403
                6175980
                30333762
                fb53c214-09c2-45b6-a43e-cbcf012ff1ed
                Copyright © 2018 Balestra, Machado, Theunissen, Balestra, Cialoni, Clot, Besnard, Kammacher, Delzenne, Germonpré and Lafère.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 April 2018
                : 14 September 2018
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 67, Pages: 8, Words: 0
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                0g,microgravity,brain countermeasures,alertness,space flights,critical flicker fusion frequency,hypergravity,cfff

                Comments

                Comment on this article