6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      VDAC Genes Expression and Regulation in Mammals

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          VDACs are pore-forming proteins, coating the mitochondrial outer membrane, and playing the role of main regulators for metabolites exchange between cytosol and mitochondria. In mammals, three isoforms have evolutionary originated, VDAC1, VDAC2, and VDAC3. Despite similarity in sequence and structure, evidence suggests different biological roles in normal and pathological conditions for each isoform. We compared Homo sapiens and Mus musculus VDAC genes and their regulatory elements. RNA-seq transcriptome analysis shows that VDAC isoforms are expressed in human and mouse tissues at different levels with a predominance of VDAC1 and VDAC2 over VDAC3, with the exception of reproductive system. Numerous transcript variants for each isoform suggest specific context-dependent regulatory mechanisms. Analysis of VDAC core promoters has highlighted that, both in a human and a mouse, VDAC genes show features of TATA-less ones. The level of CG methylation of the human VDAC genes revealed that VDAC1 promoter is less methylated than other two isoforms. We found that expression of VDAC genes is mainly regulated by transcription factors involved in controlling cell growth, proliferation and differentiation, apoptosis, and bioenergetic metabolism. A non-canonical initiation site termed “the TCT/TOP motif,” the target for translation regulation by the mTOR pathway, was identified in human VDAC2 and VDAC3 and in every murine VDACs promoter. In addition, specific TFBSs have been identified in each VDAC promoter, supporting the hypothesis that there is a partial functional divergence. These data corroborate our experimental results and reinforce the idea that gene regulation could be the key to understanding the evolutionary specialization of VDAC isoforms.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          The Human Genome Browser at UCSC

          As vertebrate genome sequences near completion and research refocuses to their analysis, the issue of effective genome annotation display becomes critical. A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu. This browser displays assembly contigs and gaps, mRNA and expressed sequence tag alignments, multiple gene predictions, cross-species homologies, single nucleotide polymorphisms, sequence-tagged sites, radiation hybrid data, transposon repeats, and more as a stack of coregistered tracks. Text and sequence-based searches provide quick and precise access to any region of specific interest. Secondary links from individual features lead to sequence details and supplementary off-site databases. One-half of the annotation tracks are computed at the University of California, Santa Cruz from publicly available sequence data; collaborators worldwide provide the rest. Users can stably add their own custom tracks to the browser for educational or research purposes. The conceptual and technical framework of the browser, its underlying MYSQL database, and overall use are described. The web site currently serves over 50,000 pages per day to over 3000 different users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.

            (2015)
            Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysis of RNA sequencing data from 1641 samples across 43 tissues from 175 individuals, generated as part of the pilot phase of the Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene expression across tissues, catalog thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants, describe complex network relationships, and identify signals from genome-wide association studies explained by eQTLs. These findings provide a systematic understanding of the cellular and biological consequences of human genetic variation and of the heterogeneity of such effects among a diverse set of human tissues. Copyright © 2015, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.

              Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2) is a transcription factor that regulates the cellular redox status. Nrf2 is controlled through a complex transcriptional/epigenetic and post-translational network that ensures its activity increases during redox perturbation, inflammation, growth factor stimulation and nutrient/energy fluxes, thereby enabling the factor to orchestrate adaptive responses to diverse forms of stress. Besides mediating stress-stimulated induction of antioxidant and detoxification genes, Nrf2 contributes to adaptation by upregulating the repair and degradation of damaged macromolecules, and by modulating intermediary metabolism. In the latter case, Nrf2 inhibits lipogenesis, supports β-oxidation of fatty acids, facilitates flux through the pentose phosphate pathway, and increases NADPH regeneration and purine biosynthesis; these observations suggest Nrf2 directs metabolic reprogramming during stress. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                05 August 2021
                2021
                : 12
                : 708695
                Affiliations
                [1] 1Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
                [2] 2Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania , Catania, Italy
                [3] 3we.MitoBiotech.srl , Catania, Italy
                [4] 4Section of Catania, National Institute of Biostructures and Biosystems , Catania, Italy
                Author notes

                Edited by: Tatiana Rostovtseva, National Institutes of Health (NIH), United States

                Reviewed by: Deborah Court, University of Manitoba, Canada; Arnon Henn, Technion Israel Institute of Technology, Israel

                *Correspondence: Francesca Guarino francesca.guarino@ 123456unict.it

                This article was submitted to Mitochondrial Research, a section of the journal Frontiers in Physiology

                †These authors have contributed equally to this work

                Article
                10.3389/fphys.2021.708695
                8374620
                34421651
                faaa493b-f36c-4fc8-a767-145aea7b0ff6
                Copyright © 2021 Zinghirino, Pappalardo, Messina, Nicosia, De Pinto and Guarino.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 May 2021
                : 02 July 2021
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 90, Pages: 14, Words: 10275
                Categories
                Physiology
                Mini Review

                Anatomy & Physiology
                vdac mammalian genes,expression profile,gene structure,mitochondria,promoter methylation,core promoter elements,transcription factor binding sites

                Comments

                Comment on this article